On décrit dans cette thèse les dimensions des groupes quotients gradués associés à la cohomologie du complémentaire d'une courbe plane par rapport à la filtration de Hodge en fonction de certains invariants géométriques. Le cas des courbes à singularités ordinaires est détaillé. En particulier, on trouve le polynôme de Hodge-Deligne d'une courbe C quelconque à singularités isolées et celui de son complémentaire duquel on déduit les nombres de Hodge mixtes ainsi que les nombres de Betti correspondants. Dans le cas des courbes dont les singularités sont des nœuds et des points triples ordinaires, on donne des relations importantes avec l'algèbre de Milnor du polynôme homogène f qui définit C, les syzygies de l'idéal Jacobien de f et la filtration par l'ordre de pôle du groupe cohomologique d'ordre 2 du complémentaire de la courbe.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01064511 |
Date | 11 June 2014 |
Creators | Abdallah, Nancy |
Publisher | Université Nice Sophia Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds