Return to search

pH changes localized to the surface of membrane transport proteins

Intracellular pH was monitored at the cytosolic surface of plasma membrane solute transporters (Na+/H+/nucleoside co-transporters, or Cl-/HCO3- exchangers), using pH-sensitive fluorescent proteins (FPs), dual emission green FP (deGFP4) and a monomeric red FP Nectarine (mNect), whose development and characterization are also reported here.
Human concentrative nucleoside transporter, hCNT3, mediates Na+/H+/nucleoside co-transport. We describe a new approach to monitor H+/uridine co-transport in HEK293 cells. pH changes at the intracellular surface of hCNT3 were monitored by fusing mNect to the cytoplasmic N-terminus of hCNT3 (mNect.hCNT3) or an inactive hCNT3 mutant (mNect.hCNT3-F563C). Cells were incubated at the permissive pH for H+-coupled nucleoside transport, pH 5.5, under both Na+-free and Na+-containing conditions. In mNect.hCNT3-expressing cells (but not under negative control conditions) the rate of acidification increased in media containing 0.5 mM uridine, providing the first direct evidence for H+-coupled uridine transport. At pH 5.5, there was no significant difference in uridine transport rates (coupled H+ flux) in the presence or absence of Na+. This suggests that in acidic Na+-containing conditions, 1 Na+ and 1 H+ are transported/uridine molecule, while in acidic Na+-free conditions, 1 H+ alone is transported/uridine. In acid environments, including renal proximal tubule and intestine, H+/nucleoside co-transport may drive nucleoside accumulation by hCNT3.
Microdomains, discrete regions of altered cytosolic solute concentration, are enhanced by rapid solute transport and slow diffusion rates. pH-regulatory membrane transporters, like the Cl-/HCO3- exchanger AE1, could nucleate H+ microdomains, since AE1 has a rapid transport rate and cytosolic H+ diffusion is slow. As AE1 drives Cl-/HCO3- exchange, differences in pH, near and remote from AE1, were monitored simultaneously by deGFP4 fused to AE1 (deGFP4.AE1) and mNect.hCNT3-F563C. deGFP4.AE1-mNect.hCNT3-F563C distance was varied by co-expression of different amounts of the two proteins in HEK293 cells. As the deGFP4.AE1-mNect.hCNT3-F563C distance increased, mNect.hCNT3-F563C detected the cytosolic pH change with a time delay and reduced rate of pH change, compared to deGFP4.AE1. Carbonic anhydrase activity was essential for H+ microdomain formation. H+ diffusion along the plasma membrane was 60-fold slower than to the cytosolic ER-surface. During physiological HCO3- transport, a H+ microdomain 0.3 µm in diameter develops around AE1, which will affect nearby pH-sensitive processes.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:AEU.10048/1697
Date06 1900
CreatorsJohnson, Danielle Elaine
ContributorsDr. Joseph Casey, Physiology and Biochemistry, Dr. James Young, Physiology, Dr. Larry Fliegel, Biochemistry, Dr. Todd Alexander, Physiology and Pediatrics, Dr. Gergely Lukacs, McGill University, Department of Physiology
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format97384510 bytes, application/pdf
RelationJohnson, D. E., and Casey, J. R. 2009. Bicarbonate Transport Metabolons. in Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural and Disease Applications, Supuran, C.T. and Winnum, J. Eds, Wiley Chapter 20, pp 415-437., Johnson, D.E., H.W. Ai, P. Wong, J.D. Young, R.E. Campbell, and J.R. Casey. 2009. Red Fluorescent Protein pH Biosensor to Detect Concentrative Nucleoside Transport. J Biol Chem. 284:20499-20511.

Page generated in 0.0025 seconds