The interactions of the radio frequency (RF) fields in magnetic resonance imaging (MRI) with a human body model are investigated. In particular, the interactions of these fields with an implanted pacemaker are studied. The specific absorption rate (SAR) levels in a heterogeneous body model are evaluated in two different birdcage coils - a resonant and a non-resonant coil - at a magnetic field of 1.5 T. The enhancement of the SAR due to an implanted cardiac pacemaker and the effect of the conductivity of the pacemaker lead on the SAR levels are investigated. The finite difference time domain (FDTD) technique is used to model these interactions. The SAR levels are found to be low in the heart region, and thus the SAR enhancement due to the pacemaker lead is relatively low. Modeling of the pacemaker leads as perfect conductors results in greater SAR enhancements than those produced by actual conductive leads.
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/1840 |
Date | 13 November 2009 |
Creators | Abrishamkar, Houman |
Contributors | Stuchly, M. A., Bornemann, J. |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0016 seconds