Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding the effects of climate change on AMF, and the resulting plant responses, is a crucial factor in predicting ecosystem responses on a global scale. We used a manipulative climate change experiment embedded within a natural climate gradient in Oregon and Washington to examine how the effects of future climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics.
Using structural equation modeling, we found that the direct effect of increasing temperatures was to decrease AMF colonization. Indirect effects of temperature, mediated through other variables, canceled each other out. However, future shifts in these relationships could either exacerbate or mitigate the negative direct effect of temperature. As ecosystems in Mediterranean climates experience more intense droughts and heavier rains, decreases in AMF colonization could have substantial consequences for plant communities and ecosystem function.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/12968 |
Date | 11 July 2013 |
Creators | Wilson, Hannah |
Contributors | Bohannan, B. J. M. |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0017 seconds