This paper presents an efficient and accurate analytical model for the radio interface of the general packet radio service (GPRS) in a GSM network. The model is utilized for investigating how many packet data channels should be allocated for GPRS under a given amount of traffic in order to guarantee appropriate quality of service. The presented model constitutes a continuous-time Markov chain. The Markov model represents the sharing of radio channels by circuit switched GSM connections and packet switched GPRS sessions under a dynamic channel allocation scheme. In contrast to previous work, the Markov model explicitly represents the mobility of users by taking into account arrivals of new GSM and GPRS users as well as handovers from neighboring cells. Furthermore, we take into account TCP flow control for the GPRS data packets. To validate the simplifications necessary for making the Markov model amenable to numerical solution, we provide a comparison of the results of the Markov model with a detailed simulator on the network level.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32550 |
Date | 17 December 2018 |
Creators | Lindemann, Christoph, Thümmler, Axel |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 0376-5075 |
Page generated in 0.0019 seconds