Return to search

Multi-scale experimental characterization of the material properties and interlaminar fracture toughness of T700G/LM-PAEK thermoplastic composites and additively manufactured composite materials

This thesis is focused on the development of multiple experimental frameworks to characterize the material properties of composite materials for the LS-DYNA MAT213 model. The main objective is to characterize these properties based on the full-field capture of the evolution of strain and stress fields in coupon-level tests at multiple scales (i.e. macroscopic and microscopic). The experimental work characterized the full-field stress-strain curves and subsequently derived the material properties of T700G/LM-PAEK thermoplastic composites. The data was later successfully utilized to generate the deformation and damage sub-models in the LS-DYNA MAT213 model for the material. Additionally, a three-point bending test methodology was created using a size effect study and geometrically scaled coupons to investigate the Mode-II interlaminar fracture toughness of the material. The experimental frameworks developed herein were also extended to characterize other composite materials, such as those produced via additive manufacturing techniques. Future experimental work will investigate fatigue failure methods for three-point bending in T700G/LM-PAEK. The experimental methods described herein will also continue to support analytical efforts that seek to develop a simulation tool based on the LS-DYNA MAT213 model for modeling the temperature and strain rate-dependent impact damages in composites under multi-axial loading.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-7170
Date10 May 2024
CreatorsPremo, Ryan Gregory
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0022 seconds