Cette thèse est consacrée à l'étude mathématique des propriétés de stabilité de systèmes quantiques infinis, décrits par des modèles non linéaires. Dans les chapitres 1 et 2, on étudie l'instabilité du vide relativiste menant au phénomène de création de paires électron-positron. Dans le chapitre 3, on considère la dynamique de ce même vide relativiste couplé à un champ scalaire. Les chapitres 4 et 5 sont consacrés au caractère dispersif de la dynamique non linéaire de Hartree pour des perturbations de la mer de Fermi, et en particulier à sa stabilité orbitale et asymptotique. Enfin, le chapitre 6 introduit une notion générale d'entropie relative entre deux états comportant une infinité de particules.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00924084 |
Date | 12 December 2013 |
Creators | Sabin, Julien |
Publisher | Université de Cergy Pontoise |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds