Return to search

Caractérisation des paliers et écoulements secondaires d'une microturbine

Depuis plus de 10 ans, l'étude de microsystèmes (MEMS : MicroElectroMechanical Systems) permettant la génération de puissance à petite échelle a fait l'objet d'une multitude de recherches dans le but d'offrir une meilleure alternative par rapport aux piles électrochimiques. Les premières études portant sur les microturbines à gaz ont permis de révéler le potentiel des micromachines rotatives pour l'implantation de micro centrales d'énergie sur une puce. La conception et la fabrication d'une première génération de microturbopompe ont permis d'établir les lignes directrices pour la conception d'une microturbine à cycle Rankine. Pour le bon fonctionnement d'un tel dispositif et pour en améliorer ses performances, il est important de mieux comprendre le comportement des écoulements internes influant sur le mouvement du rotor puisqu'ils ont été très peu étudiés. Le but de la présente recherche est d'effectuer une étude détaillée des composantes secondaires de la microturbopompe précédemment développée afin d'approfondir la compréhension des phénomènes en jeu lors de son opération. Dans la présente étude, des investigations expérimentales et des modèles approfondis ont été faits sur les joints d'étanchéité hydrodynamiques, le palier axial hydrostatique, le palier radial hydrostatique et l'écoulement radial secondaire. Combinée avec la modélisation de la turbine multiétage et de la pompe hydrodynamique, l'intégration simultanée de toutes les composantes a mis en évidence les interactions possibles entre les composantes. Ainsi, une nouvelle configuration d'opération a été proposée permettant d'atteindre un niveau de performance similaire aux essais antérieurs (295 kRPM), mais avec une pression d'alimentation du palier axial réduite considérablement ([environ]50%). Cette réduction de pression permet de se rapprocher davantage de l'opération avec des paliers autosuffisants qui a même été expérimentée, pour une première fois, à basse vitesse (77 kRPM). L'étude des joints d'étanchéité a démontré leur performance à haute vitesse (50 kPa à 190 kRPM) et l'importance bénéfique des effets de tension de surface. La pompe hydrodynamique a été caractérisée expérimentalement pour la première fois avec un écoulement externe, montrant que sa performance est limitée par le joint d'étanchéité. Pour la pompe avec un écoulement interne, un débit massique de 12 mg/s a été pompé à une vitesse de 180 kRPM. Une différence notable a été mesurée entre les deux types pompes implantés confirmant, pour une première fois, l'effet des forces centrifuges sur les performances de la pompe hydrodynamique. L'amélioration de la modélisation du palier axial a permis d'évaluer la position axiale du rotor en utilisant les pertes de pression et les débits massiques mesurés expérimentalement dans le palier axial. La forte rigidité angulaire du palier axial a également été mise en évidence. Finalement, les écoulements et le comportement dynamique du palier radial ont été étudiés analytiquement et expérimentalement, permettant de définir de nouveaux critères de conception afin d'éviter l'apparition d'instabilités dynamiques. L'étude plus approfondie des composantes secondaires de la microturbopompe a permis d'améliorer la compréhension des phénomènes dominants lors de son opération. Une base de compréhension supplémentaire a donc été établie pour le développement de micromachines rotatives telles que la microturbine à cycle Rankine et les microturbines à gaz.

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/1545
Date January 2009
CreatorsGauthier, Félix
ContributorsFréchette, Luc
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeMémoire
Rights© Félix Gauthier

Page generated in 0.0024 seconds