Palladium-catalyzed reactions have become one of the most important tools in modern organic chemistry due to its ability to catalyze the formation of new carbon-carbon bonds. The aim of the work presented in this thesis was to develop new palladium(II)-catalyzed addition reactions. In this work, cyanamides were investigated as a new substrate to give aryl amidines as products. The first protocol developed employed aryltrifluoroborates as the aryl partner, and the insertion of the aryl group into un-, mono-, and di-substituted cyanamides was successful for a wide variety of aryltrifluoroborates. An alternative method of generating the necessary intermediate for insertion into the cyanamide is the decarboxylative formation of aryl-palladium from aryl carboxylic acids. A protocol was developed for this reaction, but was unfortunately limited to a small number of ortho-substituted electron-rich aryl carboxylic acids. The mechanism was investigated by the means of DFT calculations and ESI-MS studies, and the rate-determining step was suggested to be the 1,2-carbopalladation based upon those results. A translation of the batch protocol to continuous-flow conditions was also demonstrated. The ideal method of generating the aryl-palladium species is by C-H bond activation, and this approach was demonstrated with indoles, giving a variety of 3-amidinoindoles as products. The mechanism was investigated by DFT calculations and a plausible catalytic cycle was proposed. A continuous-flow application of a desulfitative palladium(II)-catalyzed addition to nitriles to give ketones was developed. In addition, different reactor materials were evaluated in the microwave heated reactor cavity. Thus the reaction was shown to proceed with microwave heating in a borosilicate glass and an aluminum oxide reactor, and also in conditions mimicking conventional heating in a silicon carbide reactor. Finally, a protocol was developed for the convenient synthesis of sodium aryl sulfinates from Grignard and lithium reagents using a solid sulfur dioxide source as a safe alternative to the gas. The products of this protocol can be used as aryl-palladium precursors by a desulfitative process.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-326816 |
Date | January 2017 |
Creators | Rydfjord, Jonas |
Publisher | Uppsala universitet, Avdelningen för organisk farmaceutisk kemi, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, 1651-6192 ; 233 |
Page generated in 0.0216 seconds