L'évolution des polluants dans l'atmosphère dépend de phénomènes variés, tels que les émissions, la météorologie, la turbulence ou les transformations physico-chimiques, qui ont des échelles caractéristiques spatiales et temporelles très diverses. Il est très difficile, par conséquent, de représenter l'ensemble de ces échelles dans un modèle de qualité de l'air. Les modèles eulériens de chimie-transport, couramment utilisés, ont une résolution bien supérieure à la taille des plus petites échelles. Cette thèse propose une revue des processus physiques mal représentés par les modèles de qualité de l'air, et de la variabilité sous-maille qui en résulte. Parmi les méthodes possibles permettant de mieux prendre en compte les différentes échelles , deux approches ont été développées : le couplage entre un modèle local et un modèle eulérien, ainsi qu'une approche statistique de réduction d'échelle. (1) Couplage de modèles : l'une des principales causes de la variabilité sous-maille réside dans les émissions, qu'il s'agisse des émissions ponctuelles ou du trafic routier. En particulier, la taille caractéristique d'un panache émis par une cheminée très inférieure à l'échelle spatiale bien résolue par les modèles eulériens. Une première approche étudiée dans la thèse est un traitement sous maille des émissions ponctuelles, en couplant un modèle gaussien à bouffées pour l'échelle locale à un modèle eulérien (couplage appelé panache sous-maille). L'impact de ce traitement est évalué sur des cas de traceurs à l'échelle continentale (ETEX-I et Tchernobyl) ainsi que sur un cas de photochimie à l'échelle de la région parisienne. Différents aspects sont étudiés, notamment l'incertitude due aux paramétrisations du modèle local, ainsi que l'influence de la résolution du maillage eulérien. (2) Réduction d'échelle statistique : une seconde approche est présentée, basée sur des méthodes statistiques de réduction d'échelle. Il s'agit de corriger l'erreur de représentativité du modèle aux stations de mesures. En effet, l'échelle de représentativité d'une station de mesure est souvent inférieure à l'échelle traitée par le modèle (échelle d'une maille), et les concentrations à la station sont donc mal représentées par le modèle. En pratique, il s'agit d'utiliser des relations statistiques entre les concentrations dans les mailles du modèle et les concentrations aux stations de mesure, afin d'améliorer les prévisions aux stations. L'utilisation d'un ensemble de modèles permet de prendre en compte l'incertitude inhérente aux paramétrisations des modèles. Avec cet ensemble, différentes techniques sont utilisées, de la régression simple à la décomposition en composantes principales, ainsi qu'une technique nouvelle appelée " composantes principales ajustées ". Les résultats sont présentés pour l'ozone à l'échelle européenne, et analysés notamment en fonction du type de station concerné (rural, urbain ou périurbain)
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00584389 |
Date | 15 December 2009 |
Creators | Bourdin-Korsakissok, Irène |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.003 seconds