Intracellular hyperthermic therapy may prove to be a unique and novel approach to the management of pancreatic cancer. Utilizing the principle of photothermal destruction, selective killing of cancer cells with minimal injury to normal tissues may be possible. This dissertation investigated the role of antibody targeted metal nanoparticles and the cytotoxic effects of nonionizing radiofrequency fields in pancreatic cancer. Cancer cell death was induced by heat release from intracellular metal nanoparticles after radiofrequency field exposure. Fluorescent and gold nanoparticles were delivered with two antibodies, cetuximab and PAM-4, to pancreatic cancer cells in vitro and mouse xenografts in vivo. Selective delivery of these nanoparticles induced cell death in vitro and decreased tumor burden in vivo after whole animal RF field exposure. This occurred through both apoptosis and necrosis. In addition, activated caspase-3 was increased after antibody treatment and RF field exposure. Furthermore, although there was non-specific uptake by the liver and spleen in vivo, there was no evidence of acute or chronic toxicity in the animals. These results are in agreement with the principle that malignant cells are more thermally sensitive than normal cells or tissues. Selective intracellular delivery of metal nanoparticles coupled with whole body RF field exposure may be a beneficial therapy against micrometastases and unresectable pancreatic cancer in the future. Further studies are planned with more specific antibodies, other nanoparticles, and other cancer targets.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/222840 |
Date | January 2012 |
Creators | Glazer, Evan S. |
Contributors | Krouse, Robert S., Curley, Steven A., McDonagh, Paul F., Heimark, Ronald L., Friese, Randall, Krouse, Robert S. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds