One of the main interests in commercial methane production is to maximize the gas yield, and it is thus appealing to use material with relative high methane potential. However, such material often results in process instability whereas ammonia inhibition is common. Removal of ammonia through adsorption is a fairly unexplored method in the field of biogas production, and could prove to be cost-effective.The adsorption capacity of pulp fibres from the paper making industry were investigated through batch adsorption experiments. Additionally, the fibres effect on small scale batch digesters in terms of methane production and cellulase activity was explored. Overall, the adsorption capacity of the pulp fibres was low, whereas Kraft hardwood had the highest adsorption capacity in both an aqueous ammonium solution and digester fluid at 11±3 and 60±20 mg g-1, respectively. The initial total ammonium nitrogen concentration had the highest effect on the adsorption capacity with a positive correlation. The pulp fibres seemingly had no effect on the ammonia inhibited anaerobic digestion systems. However, the cellulase activity was higher after day 5 in the anaerobic digestion systems with a high ammonia concentration.In essence, the overall results showed that the adsorption of the fibres was relatively low and most likely not suitable as a material to prevent ammonia inhibition in an AD.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-177891 |
Date | January 2021 |
Creators | Wrangbert, Marcus |
Publisher | Linköpings universitet, Tema Miljöförändring, Linköpings universitet, Biogas Research Center |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds