Return to search

Biochemical modification of wood components

<p>The degradation of cellulose found in wood is one of the most important degradation processes for the carbon flux on earth. The degradation is performed by microorganisms that typically use enzymes. Since the cellulose in wood is crystalline and embedded in other polymers, making it inaccessible and durable, the enzymatic methods of cellulose degradation is also complex.</p><p>In this thesis, the action of some of these enzymes, called cellulases, have been studied both fundamentally and for industrial purposes. By using model cellulose films and a quartz crystal microbalance it was found that endoglucanases not only depolymerize but also swell model cellulose films. Most probably, this contributes to the synergy seen between endoglucanases and exoglucanases.</p><p>When an pulp fibers were pre--treated with endoglucanases and beaten subsequently, the fibers became more swollen than reference fibers. The effects of beating enzyme pre--treated fibers were investigated, indicating that endoglucanases improves the fiber/fiber interaction but also alters the behavior of the fibers in the beating process to become more susceptible to the beating.</p><p>The second part of the thesis has been focused on the use of an albino fungi in order to decrease the amount of wood extractives in wood chips prior to thermo mechanical pulp production. The fungus decreased the most troublesome component, the triglycerides, by more than 90 percent in two weeks without any detrimental effects on pulp properties. On the contrary, pulp strength and optical properties were improved.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-4171
Date January 2006
CreatorsJosefsson, Peter
PublisherKTH, Fibre and Polymer Technology, Stockholm : Fiber- och polymerteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationTrita-FPT-Report, 1652-2443 ; 2006:33

Page generated in 0.0018 seconds