Return to search

Global existence and fast-reaction limit in reaction-diffusion systems with cross effects / Existence globale et limite de réaction rapide dans des systèmes de réaction-diffusion avec effets croisés

Cette thèse est consacrée à l'étude de systèmes d'équations aux dérivées partielles paraboliques issus de modèles de cinétique chimique, de dynamique des populations et de la théorie de l'électromigration. On s'intéresse à des questions d'existence de solutions globales en temps, à l'unicité de solutions faibles, ainsi qu'à la limite de réaction rapide dans un système de réaction-diffusion. Dans un premier chapitre, on étudie deux systèmes aux diffusions croisées. On commence par s'intéresser à un modèle de dynamique des populations, où les effets croisés dans les interactions entre les différentes espèces sont modélisés par des opérateurs non locaux. Pour toute dimension d'espace, on prouve l'existence et l'unicité de solutions globales régulières. On s'intéresse ensuite à un système aux diffusions croisées qui apparait comme la limite de réaction rapide d'un système classique associé à la réaction chimique C1+C2=C3. On prouve alors la convergence lorsque k tend vers l'infini de la solution du système avec une vitesse de réaction finie k vers une solution globale du système limite. Le second chapitre contient de nouveaux résultats d'existence globale pour des systèmes de réaction-diffusion. Pour des réseaux de réactions chimiques élémentaires du type Ci+Cj=Ck qui suivent la loi d'Action de Masse, on montre l'existence et l'unicité de solutions globales fortes, pour des dimensions en espace N<6 dans le cas semi-linéaire et N<4 dans le cas quasi-linéaire. On montre aussi l'existence de solutions globales faibles pour une classe de systèmes paraboliques quasi-linéaires dont les non-linéarités sont au plus quadratiques et dont les données initiales sont seulement supposées positives et intégrables. Dans le dernier chapitre, on généralise un résultat d'existence globale de solutions fortes pour des systèmes de réaction-diffusion dont les non-linéarités ont une structure "triangulaire", pour lesquels on prend désormais en compte des termes d'advection et des coefficients de diffusion dépendant du temps et de la variable d'espace. Ce résultat est ensuite utilisé dans un argument de point fixe de Leray-Schauder pour prouver l'existence en toute dimension de solutions globales à un problème d'électromigration-diffusion. / This thesis is devoted to the study of parabolic systems of partial differential equations arising in mass action kinetics chemistry, population dynamics and electromigration theory. We are interested in the existence of global solutions, uniqueness of weak solutions, and in the fast-reaction limit in a reaction-diffusion system. In the first chapter, we study two cross-diffusion systems. We are first interested in a population dynamics model, where cross effects in the interactions between the different species are modeled by non-local operators. We prove the well-posedness of the corresponding system for any space dimension. We are then interested in a cross-diffusion system which arises as the fast-reaction limit system in a classical system for the chemical reaction C1+C2=C3. We prove the convergence when k goes to infinity of the solution of the system with finite reaction speed k to a global solution of the limit system. The second chapter contains new global existence results for some reaction-diffusion systems. For networks of elementary chemical reactions of the type Ci+Cj=Ck and under Mass Action Kinetics assumption, we prove the existence and uniqueness of global strong solutions, for space dimensions N<6 in the semi-linear case, and N<4 in the quasi-linear case. We also prove the existence of global weak solutions for a class of parabolic quasi-linear systems with at most quadratic non-linearities and with initial data that are only assumed to be nonnegative and integrable. In the last chapter, we generalize a global well-posedness result for reaction-diffusion systems whose nonlinearities have a "triangular" structure, for which we now take into account advection terms and time and space dependent diffusion coefficients. The latter result is then used in a Leray-Schauder fixed point argument to prove the existence of global solutions in a diffusion-electromigration system.

Identiferoai:union.ndltd.org:theses.fr/2012DENS0079
Date07 December 2012
CreatorsRolland, Guillaume
ContributorsCachan, Ecole normale supérieure, Technische Universität (Darmstadt, Allemagne), Pierre, Michel, Bothe, Dieter
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds