Return to search

A site-directed spin labelling study of the human alpha-lactalbumin molten globule

The human α-lactalbumin (α-LA) molten globule formed at low pH is a model for the study of protein folding intermediates. The molten globule lacks native-like side-chain interactions, resulting in a fluctuating ensemble of tertiary structures, characterisation of which has been precluded by severe line-broadening in NMR spectra and a lack of long-range NOEs. Paramagnetic relaxation enhancements (PREs) have been measured in a variant of α-LA in which all native cysteines have been mutated to alanine (all-Ala α-LA). Cysteine residues have been mutated into regions of interest and spin labelled with MTSL. These measurements have confirmed that all-Ala α-LA forms a compact molten globule. Transient, long-range interactions that are stabilising the compact fold have also been identified using PREs measured in urea-denatured states. This has identified several interactions formed by hydrophobic residues from both the α- and β-domain, which could be important for initiating and driving folding. The molten globule’s 3D topology has been probed by measuring long-range distances between MTSL pairs using Double Electron-Electron Resonance (DEER). Broad distance distributions have been identified between elements of secondary structure, indicative of a fluctuating but compact fold. By contrast, a narrower distance distribution has been measured within one of the major helices, indicative of native-like secondary structure. The surface accessibility of all-Ala α-LA and that of two other variants ([28-111] α-LA and 4SS α-LA) has been probed using solvent PREs obtained using TEMPOL, a paramagnetic co-solute. This has revealed differences in the solvent-exposure of hydrophobic residues due to the removal of disulphide bonds. This method has also identified buried hydrophobic residues that contribute to forming the molten globule’s stable, native-like core.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:639965
Date January 2013
CreatorsYoung, Matthew Alexander
ContributorsRedfield, Christina
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:cdc9904d-77cc-4d20-b01d-096bc2b16d72

Page generated in 0.0022 seconds