In this thesis, we consider approaches to enumeration problems in the parameterized
complexity setting. We obtain competitive parameterized algorithms to enumerate all, as well as several of, the solutions for two related problems Neighbour String and Kemeny Rank Aggregation. In both problems, the goal is to find a solution that is as close as possible to a set of inputs (strings and total orders, respectively) according to some distance measure.
We also introduce a notion of enumerative kernels for which there is a bijection between solutions to the original instance and solutions to the kernel, and provide such a kernel for Kemeny Rank Aggregation, improving a previous kernel for the problem.
We demonstrate how several of the algorithms and notions discussed in this thesis are
extensible to a group of parameterized problems, improving published results for some other problems.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/7774 |
Date | January 2013 |
Creators | Simjour, Narges |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0017 seconds