MSc. (Geology) / The Mesoproterozoic Pilanesberg Alkaline Complex is located in the north central region of the Kaapvaal Craton of South Africa and is one of the largest alkaline intrusive bodies in the world. It is also one of the least studied due to the fact that the dominant exposure of the complex forms part of the Pilanesberg National Park. The Pilanesberg Complex intruded into the western limb of the Paleoproterozoic Bushveld Complex, the complex is a circular structure of 530km2 appearing on the map as a set of concentric rings of different varieties of syenites, capped by extrusive pyroclastic units and lavas. The present study is focused on the petrography and mineral chemistry of the rocks and minerals in an outcrop of mainly lujavrite, which is located in the Ledig nepheline syenite previously referred to as Ledig foyaite, named after an informal settlement by the name of Ledig which is situated approximately a kilometer south of the outcrop. This unit is emplaced in the southern region of the Pilanesberg complex and is believed to be a hybrid of the white nepheline syenite and the green nepheline syenite. A number of different rock types were examined from this outcrop, however, detailed work was only carried out on the lujavrites, in particular the eudialyte bearing lujavrites. The lujavrites consist of porphyroblasts of heterogeneously-sized feldspars, feldspathoids and mafic minerals set within a finer grained material. The bulk rock geochemical data on the Ledig lujavrites indicate considerable variation, but no obvious trends. A selected number of samples collected from the ledig lujavrite outcrop were geochemically analysed, these samples sit within the nepheline syenite field and have a shoshonitic affinity. The samples analysed have a relatively wide range of SiO2 content (20.39% to 52.67%), however the majority of the samples fall between 47.07 and 52.67%, the fluorite rich sample analysed has the lowest SiO2 as well as the lowest alkali content. The lujavrites and tinguaites are silica undersaturated and rich in alkalis. All the samples analysed are alkaline in nature and fall in the ferroan field. There is some variation in the SiO2 content and a large variation in Mg# in the sample population, this appears to be due to different proportions of minerals occurring as phenocrysts. No clear trends emerge, which is in part due to the very large differences in element concentrations within rock types with similar SiO2 content and Mg#. A lack of geochemical variation stemming from Abstract differentiation was expected as the samples were collected from a single outcrop essentially within a single lithology. There are a number of different phases of eudialyte that have been identified and studied from the Pilanesberg, at both the outcrop and in the northern area of the green lujavrites. At the Ledig lujavrite outcrop, there are euhedral magmatic eudialytes, which contain nepheline inclusions as well as post-magmatic eudialytes present in the samples studied. The two textural types have distinctly different chemical compositions. The majority of the feldspars present within the Ledig lujavrites appear, from their texture, to be primary magmatic minerals, however there are also feldspars present within the lujavrites which appear to be a product of secondary unmixing of feldspars as documented by the perthitic textures. Sodalite is present as a magmatic mineral; however, it is most commonly observed in the interstitial spaces and is thought to be an alteration product of nepheline. Analcime occurs in the groundmass, forming in the intergranular reaction rim between mineral phases. The analcime is typically controlled by the shape of the interstices...
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:13659 |
Date | 30 June 2015 |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Thesis |
Rights | University of Johannesburg |
Page generated in 0.0017 seconds