At present reproductive biotechnology methods are on the rise, but their development and application in the broader management of reproduction is dependent on obtaining a sufficient number of quality oocytes cultured in vitro. The prerequisite for this requirement is the creation of the optimal conditions in the course of culturing oocytes.
Understanding and knowledge of the processes that occur in oocyte during maturation is an important and necessary condition for optimizing the process of culturing oocytes in vitro and gaining a sufficient number of good quality oocytes in metaphase II of meiotic division. A large number of mechanisms that affect and control oocyte maturation are known, however it cannot be claimed that this process has been fully explained and studied. One factor which has a potential role in the regulation of meiotic maturation of oocytes is gasotransmitter hydrogen sulfide (H2S), a critical signaling molecule of endogenous origin.
The study of H2S led to the hypothesis that H2S actively influences the course of meiotic maturation of pig oocytes by regulating key signaling cascades. The aim of this work was to determine the involvement of H2S in the regulation of the MEK1-MAPK signaling cascade, responsible for the initiation and progress of the meiotic maturation of oocytes and the MEK1-PARP-1 cascade as signaling that supports cell viability. For this purpose, pig oocytes cultured in modified media were used, supplemented with a specific combination of enzyme inhibitors (3Ki) or in a culture medium with donor H2S. The ocytes were then subjected to immunocytochemistry staining, fluorescence microscopy and image analysis.
The results show that H2S is involved in the regulation of meiotic maturation. It confirmed the hypothesis of the endogenous production of H2S in the course of the meiotic maturation of pig oocytes and the influence of the MAPK signaling cascade. Based on the results, it is however likely that the MEK1-PARP-1 signaling cascade is not affected by H2S, unlike MAPK signaling, comprising the mentioned MEK1 as superior kinase. MAPK kinase activity is significantly lower in oocytes after treatment 3Ki. Further experiments are for a detailed understanding of these regulatory pathways and for the proper verification of the mechanism of the effects of H2S necessary, in particular for a full understanding of the target control factors by the post-translational modification of S-sulfhydration.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:259240 |
Date | January 2016 |
Creators | Veselá, Andrea |
Contributors | Hošková, Kristýna, Tomáš, Tomáš |
Publisher | Česká zemědělská univerzita v Praze |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds