Return to search

Influence of Oxygen Partial Pressure on the Droplet Shape of Stainless Steel Using Levitated Droplet Method

An induction setup for levitation studies of molten metals was built. The setup was used to levitate and heat stainless steel samples of 2.00 g to 1600 °C and subject them to different atmospheres. Changes in shape and temperature were recorded by video and infrared thermocouple. Oxide films forming on the droplets during levitation were observed. It was possible to notice an immediate surface reaction when the reaction gas was introduced. This reaction is concluded to influence the surface and bulk composition, and therefore have an effect on the shape evolution of the droplet. A more oxidizing atmosphere resulted in a more conical droplet shape; this is thought to be an effect of lowered surface tension and the conically shaped volumetric force caused by the magnetic field. Changes in temperature after the sample is molten are thought to be an effect of changes in emissivity, caused by surface oxidization. Post mortem analysis show a difference in surface morphology for samples subjected to different gases, as well as a difference in amount of oxidization.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-199668
Date January 2016
CreatorsHessling, Oscar
PublisherKTH, Materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds