Return to search

Metallization and Modification of Low-k Dielectric Materials

Aluminum was deposited onto both Teflon AF and Parylene AF surfaces by chemical vapor deposition of trimethylaluminum. This work shows that similar thin film (100 Angstroms) aluminum oxide adlayers form on both polymers at the low temperature dosing conditions used in the studies. Upon anneal to room temperature and above, defluorination of the polymer surfaces increased and resulted in fluorinated aluminum oxide adlayers; the adlayers were thermally stable to the highest temperatures tested (600 K). Angle-resolved spectra showed higher levels of fluorination toward the polymer/adlayer interface region. Copper films were also deposited at low temperature onto Teflon AF using a copper hexafluoroacetylacetonate-cyclooctadiene precursor. Annealing up to 600 K resulted in the loss of precursor ligands and a shift to metallic copper. As with aluminum adlayers, some polymer defluorination and resulting metal (copper) fluoride was detected. Parylene AF and polystyrene films surfaces were modified by directly dosing with water vapor passed across a hot tungsten filament. Oxygen incorporation into polystyrene occurred exclusively at aromatic carbon sites, whereas oxygen incorporation into parylene occurred in both aromatic and aliphatic sites. Oxygen x-ray photoelectron spectra of the modified polymers were comparable, indicating that similar reactions occurred. The surface oxygenation of parylene allowed enhanced reactivity toward aluminum chemical vapor deposition. Silicon-carbon (Si-Cx) films were formed by electron beam bombardment of trimethylvinylsilane films which were adsorbed onto metal substrates at low temperatures in ultra-high vacuum. Oxygen was also added to the films by coadsorbing water before electron beam bombardment; the films were stable to more than 700 K, with increasing silicon-oxygen bond formation at elevated temperatures. Copper metal was sputter deposited in small increments onto non-oxygenated films. X-ray photoelectric spectra show three-dimensional copper growth (rather than layer-by-layer growth), indicating only weak interaction between the copper and underlying films. Annealing at elevated temperatures caused coalescence or growth of the copper islands, with spectra indicating metallic copper rather than copper oxide.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc9754
Date12 1900
CreatorsMartini, David M.
ContributorsKelber, Jeffry A., Acree, William E. (William Eugene), Cundari, Thomas, Omary, Mohammad
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Martini, David M., Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.002 seconds