Developmental Dysplasia of the Hip (DDH) is an abnormal condition where hip joint dislocation, misalignment, or instability is present in infants. Rates of incidence of DDH in newborn infants have been reported to vary between 1 and 20 per 1000 births, making it the most common congenital malformation of the musculoskeletal system. DDH early detection and treatment is critical to avoid the use of surgical treatment in infants and to prevent future complications such as osteoarthritis in adult life. To this day several non-surgical treatments involving the use of harnesses and braces have been proposed to treat DDH in infants, with the Pavlik harness being the current non-surgical standard used to treat DDH at early stages. Although the Pavlik harness has been proven to be successful treating subtle dislocations, severe dislocations do not always reduce. Until now the use of the harness remains an empirical method, and its effectiveness often depends on physician expertise or trial-error procedures; thus a clear guideline has not been established to determine the best optimal harness configuration to treat both subtle and severe dislocations. The goal of this dissertation is to understand the connection between reductions for subtle and severe dislocations and passive muscle forces and moments generated while the harness is used during treatment. While the understanding of DDH biomechanics will provide a valuable clinically applicable approach to optimize and increase harness success rate, it is not without its difficulties. This research has created and developed a three-dimensional based on patient-specific geometry of an infant lower limb. The kinematics and dynamics of the lower limb were defined by modeling the hip, femur, tibia, fibula, ankle, foot, and toe bones. The lines of action of five (5) adductor muscles, namely, the Adductor Brevis, Adductor Longus, Adductor Magnus, Pectineus, and Gracilis were identified as mediators of reduction and its mechanical behavior was characterized using a passive response. Four grades (1-4) of dislocation as specified by the International Hip Dysplasia Institute (IHDI) were considered, and the computer model was computationally manipulated to represent physiological dislocations. To account for proper harness modeling, the femur was restrained to move in an envelope consistent with its constraints. The model of the infant lower limb has been used to analyze subtle and severe dislocations. Results are consistent with previous studies based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the Pavlik harness for severe dislocations. Furthermore the findings on this work suggest that for severe dislocations, the use of the harness could be optimized to achieve hyperflexion of the lower limb leading to successful reduction for cases where the harness fails. This approach provides three main advantages and innovations: 1) the used of patient-specific geometry to elucidate the biomechanics of DDH; 2) the ability to computationally dislocate the model to represent dislocation severity; and 3) the quantification of external forces needed to accomplish reduction for severe dislocations. This study aims to offer a practical solution to effective treatment that draws from engineering expertise and modeling capabilities and also draws upon medical input. The findings of this work will lay the foundation for future optimization of non-surgical methods critical for the treatment of DDH.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-2136 |
Date | 01 January 2015 |
Creators | Huayamave, Victor |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0021 seconds