Return to search

Path Integral for the Hydrogen Atom : Solutions in two and three dimensions / Vägintegral för Väteatomen : Lösningar i två och tre dimensioner

The path integral formulation of quantum mechanics generalizes the action principle of classical mechanics. The Feynman path integral is, roughly speaking, a sum over all possible paths that a particle can take between fixed endpoints, where each path contributes to the sum by a phase factor involving the action for the path. The resulting sum gives the probability amplitude of propagation between the two endpoints, a quantity called the propagator. Solutions of the Feynman path integral formula exist, however, only for a small number of simple systems, and modifications need to be made when dealing with more complicated systems involving singular potentials, including the Coulomb potential. We derive a generalized path integral formula, that can be used in these cases, for a quantity called the pseudo-propagator from which we obtain the fixed-energy amplitude, related to the propagator by a Fourier transform. The new path integral formula is then successfully solved for the Hydrogen atom in two and three dimensions, and we obtain integral representations for the fixed-energy amplitude. / Vägintegral-formuleringen av kvantmekanik generaliserar minsta-verkanprincipen från klassisk mekanik. Feynmans vägintegral kan ses som en summa över alla möjliga vägar en partikel kan ta mellan två givna ändpunkter A och B, där varje väg bidrar till summan med en fasfaktor innehållande den klassiska verkan för vägen. Den resulterande summan ger propagatorn, sannolikhetsamplituden att partikeln går från A till B. Feynmans vägintegral är dock bara lösbar för ett fåtal simpla system, och modifikationer behöver göras när det gäller mer komplexa system vars potentialer innehåller singulariteter, såsom Coulomb--potentialen. Vi härleder en generaliserad vägintegral-formel som kan användas i dessa fall, för en pseudo-propagator, från vilken vi erhåller fix-energi-amplituden som är relaterad till propagatorn via en Fourier-transform. Den nya vägintegral-formeln löses sedan med framgång för väteatomen i två och tre dimensioner, och vi erhåller integral-representationer för fix-energi-amplituden.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-44425
Date January 2016
CreatorsSvensson, Anders
PublisherKarlstads universitet, Institutionen för ingenjörsvetenskap och fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds