The purpose of this project is to implement obstacle avoidance algorithms to drive the articulated vehicle autonomously in an unknown environment, which is simulated by AgX Dynamics™ simulation software and controlled by Matlab® programming software. Three driving modes are developed for driving the vehicle (Manual, Semi-autonomous and Autonomous) in this project. Path tracking algorithms and obstacle avoidance algorithms are implemented to navigate the vehicle. A GUI was built and used for the manual driving mode in this project. The semi-autonomous mode checked different cases: change lanes, U-turn, following a line, following a path and figure 8 course. The autonomous mode is implemented to drive the articulated vehicle in an unknown environment with moving to a pose path tracking algorithm and VFH+ obstacle avoidance algorithm. Thus, the simulation model and VFH+ obstacle avoidance algorithm seems to be working fine and still can be improved for the autonomous vehicle. The result of this project showed a good performance of the simulation model. Moreover, this simulation software helps to minimize the cost of the articulated vehicle since all tests are in the simulation rather than in the reality.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-126394 |
Date | January 2016 |
Creators | Yan, Yutong |
Publisher | Umeå universitet, Institutionen för tillämpad fysik och elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Robotics and control lab, 1654-5419 |
Page generated in 0.0019 seconds