Autonomous vehicles have increasingly become an attractive field due its promising capabilities of improvements regarding safety, comfort, traffic flow etc. A required attribute for those vehicles is the ability of autonomously compute its path towards a destination point. The path must be planned considering the constructive aspects of the vehicle in order to guarantee the maneuver feasibility. This work consists on computing a feasible path for autonomous vehicles with non-holonomic constraints. Piecewise linear continuouscurvature paths constituted of clothoids, circular arcs, and straight lines are used for this purpose, providing passenger\'s comfort. The road network is modeled from GPS (Global Positioning System) vehicle trajectories by defining lanes, roundabouts and intersections. GPS points are used later to parameterize lanes using clothoids and to extract roundabout centers and radii. This approach provides a sparse road network model since GPS points are replaced by parameterized curves. The information about connections between roads coming from the model is used by a global path planner, which computes a minimal length route from the vehicle current position to the destination point. After that, path planners compute intersection and roundabout paths depending on the nature of connections between roads. Also, lanes changes are performed to obey traffic rules. These three path planners that connects adjacent roads use clothoids, circular arc, and straight lines as interpolating curves whose curvature is constrained to that the vehicle can perform: the intersection path planner uses only a minimal amount of steering to perform the maneuver, increasing the comfort level; the roundabout path planner takes the roundabout center and radius as well as parameters that defines the entrance and exit maneuvers to compute the path; the lane change path planner connects lanes belonging to the same road with a prescribed longitudinal traveled distance depending on whether this maneuver is required. In the end, an global continuous-curvature path is generated. As the result of this work, a real urban scenario is modeled and the proposed approaches are validated. / Veículos autônomos têm cada vez mais se tornado um campo atraente de pesquisa devido às suas capacidades promissoras de melhorias em segurança, conforto, fluxo de tráfego, etc. Um atributo necessário para esses veículos é a capacidade de calcular, de forma autônoma, o seu caminho para um ponto de destino. O percurso deve ser planejado considerando os aspectos construtivos do veículo para que a viabilidade das manobras a serem executadas seja garantida. Este trabalho consiste no planejamento de trajetória para veículos autônomos com restrições não-holonômicas. Utilizam-se, para esse efeito, trajetórias cuja curvatura seja contínua e linear por partes, constituídas por clotóides, arcos de circunferência e retas, de forma a proporcionar conforto aos passageiros. A topologia de vias é modelada a partir de trajetórias definidas por pontos de GPS (Sistema de Posicionamento Global), definindo pistas, rotatórias e cruzamentos. Pontos de GPS são usados posteriormente para parametrizar as pistas usando clotóides a para extrair centros e raios das rotatórias. Essa abordagem proporciona um modelo esparso de topologia de vias uma vez que pontos de GPS são substituídos por curvas parametrizadas. A informação a cerca das conexões entre vias advinda do modelo é usada por um planejador de caminho global, o qual calcula a rota mais curta da posição atual do veículo até seu ponto de destino. Após essa etapa, planejadores calculam caminhos em cruzamentos e rotatórias dependendo do tipo de conexão entre as vias. Também, trocas de faixa devem ser executadas para obedecer regras de trânsito. Esses três planejadores de caminho usam clotóides, arcos de circunferência e retas como curvas interpoladoras, cuja curvatura é restrita a valores que o veículo é capaz de executar: o planejador de caminho em cruzamentos usa apenas um mínimo de velocidade de rotação do volante do veículo para executar a manobra, melhorando o nível de conforto; o planejador de caminho em rotatórias requer as coordenadas do centro e o raio da rotatória, bem como parâmetros que definem as manobras na entrada e na saída da rotatória para calcular o caminho; o planejador de caminho para troca de faixa conecta pistas pertencentes à mesma via com uma distância longitudinal do caminho previamente determinada. Ao final, um caminho com curvatura globalmente contínua é gerado. Como resultado deste trabalho, um cenário urbano real é modelado e os métodos propostos são validados.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02032018-095552 |
Date | 26 January 2018 |
Creators | Júnior Anderson Rodrigues da Silva |
Contributors | Valdir Grassi Junior, Luciano Cunha de Araújo Pimenta, Denis Fernando Wolf |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds