Return to search

Synovial sarcoma : translating gene expression into patient care

Synovial sarcoma is a soft tissue tumor defined by the presence of t(X;18)(p11.2;q11.2), fusing the SYT (SS18) gene on chromosome 18 and one of three SSX genes on chromosome X. T(X;18) results in production of a fusion protein (SYT-SSX) that is thought to underlie synovial sarcoma pathogenesis through aberrant targeting of both activating (trithorax, SWI/SNF) and repressing (Polycomb) transcription factors when expressed in a stem or progenitor-like cellular background.
Clinically, synovial sarcomas present considerable diagnostic and therapeutic challenges. Whereas the classical biphasic histology is distinctive, the more common monophasic histology can be difficult to differentiate from other spindle cell tumors. In these situations, detection of t(X;18) is the gold standard for diagnosis, but it is a specialized and time-consuming process. Immunohistochemistry can be helpful, but no marker that is both highly sensitive and specific is available. Here I describe a fluorescence in situ hybridization based method employing an SYT break-apart probe set that can expedite detection of t(X;18). I also report that TLE1, which was identified in gene expression studies as a good discriminator of synovial sarcoma from other mesenchymal tumors, is a highly sensitive and specific immunohistochemical marker for synovial sarcoma. Both of these novel diagnostic techniques are applicable to small tissue samples such as core needle biopsies and are now being used clinically.
The diagnosis of synovial sarcoma carries a poor prognosis and the 10-year overall survival rate is approximately 50%, most of whom are young adults. The addition of chemotherapy to surgical resection (the mainstay of treatment) does not appear to improve overall survival. Thus, there is a strong need for development of a clinically effective systemic therapy to improve patient outcome. I describe preclinical studies that demonstrate the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) inhibits proliferation of synovial sarcoma by inducing apoptosis and that this is associated with degradation of multiple receptor tyrosine kinases and disruption of the SYT-SSX-β-catenin interaction. I also identify a subset of synovial sarcoma cells, typified by expression of CD133, which exhibit stem-like properties and are relatively resistant to doxorubicin but susceptible to 17-AAG at clinically relevant concentrations.

  1. http://hdl.handle.net/2429/659
Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU./659
Date05 1900
CreatorsTerry, Jefferson
PublisherUniversity of British Columbia
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format3256913 bytes, application/pdf

Page generated in 0.0035 seconds