Phytophthora blight of peppers (Capsicum annuum) is caused by the oomycete pathogen Phytophthora capsici. In Arizona, the root and crown rot phase of the disease initially can appear on plants early in the growing season in areas of the field where soil remains saturated with water after an irrigation or rainfall event. Disease severity can increase dramatically due to summer rains during July and August in the southeastern Arizona production area. The efficacy of the systemic fungicide mefenoxam (Ridomil Gold)) for control of Phytophthora blight on pepper has been documented; however, in many pepper production regions, populations of the pathogen insensitive to this fungicide have developed. Other chemistries, including dimethomorph (Acrobat) as well as some new fungicides in development, have activity on some species of Phytophthora and associated diseases on crops other than pepper. The objective of the following study was to evaluate additional chemistries for efficacy in suppressing development of root and crown rot on pepper plants grown in soil naturally infested with Phytophthora capsici. In the first trial, nontreated pepper plants were all dead after an average elapsed time of 5 days in soil infested with P. capsici. In the same trial, no plants died after 66 days when the soil was treated with Ranman (cyazofamid), V-10161 (fluopicolide), and Reason (fenamidone) + Previcur Flex (propamocarb). Additionally, only one out of five pepper plants died when treated with Omega (fluazinam), NOA-446510 (mandipropamid) and AgriFos (mono- and di-potassium salts of phosphorous acid). For all of these treatments, the duration of plant survival and fresh weight of plant shoots and roots did not differ significantly from plants grown in sterilized soil. Similar results were obtained in the second trial. The results from these trials suggest that several fungicides currently not registered for use on peppers may be effective components of a management program for Phytophthora root and crown rot. The data is promising; however, additional studies in field soil naturally infested with P. capsici are needed to confirm the preliminary findings of these initial experiments.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/215030 |
Date | 09 1900 |
Creators | Matheron, Michael E., Porchas, Martin |
Contributors | Byrne, David N., Baciewicz, Patti |
Publisher | College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ) |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Article |
Relation | AZ1419, Series P-146 |
Page generated in 0.0033 seconds