Return to search

A mechanism for exosite-mediated factor IX activation by factor XIa

Factor XI (FXI) is the zymogen of a protease (FXIa) that contributes to blood coagulation by activating factor IX (FIX). This thesis presents several novel observations regarding the structure and function of FXI that will enhance our understanding of this molecule. First, a new mechanism is described for FIX activation by FXIa based on a rigorous kinetic analysis. FXIa cleaves FIX initially after Arg145 to form FIXá, which is released, and then quickly rebinds to FXIa, allowing cleavage after Arg180 to form the active protease FIXaâ. Catalytic efficiency for cleavage after Arg180 is significantly greater than after Arg145, limiting FIXá accumulation. Using site-directed mutagenesis and protein modeling, the structural basis for the interaction of FIX and FXIa was identified. The ù-loop of FIX appears to bind to an area on FXIa comprised of residues from the N- and C-termini of the A3 domain in the heavy chain. These residues are buried in zymogen FXI, and are exposed upon activation to permit FIX binding.
FXI is a homodimeric zymogen that is converted to a protease with one (1/2-FXIa) or two (FXIa) active subunits by factor XIIa (FXIIa) or thrombin. The in vitro and in vivo studies presented in this thesis indicate that FXIIa and thrombin activate FXI by different mechanisms. The dimeric structure of FXI is essential for normal activation by FXIIa, but is not required when thrombin is the activating protease. Activation of FXI is accelerated by polyanions such as polyphosphate released from platelet dense granule. Indeed, FXI can undergo autoactivation in the presence of polyphosphate. We determined that polyphosphate enhances FXI activation through a template-type mechanism requiring FXI and an activating protease to binding in proximity to each other on the polyphosphate. Two anion binding sites on the A3 and catalytic domains of FXI are required for optimal enhancement. Work with mice indicates that the anion binding sites contribute to FXI-dependent thrombotic processes in vivo. The work in this thesis provides a foundation for future studies to understand the role of FXI in normal and pathologic coagulation, and for developing therapeutic agents to treat or prevent thrombotic disorders.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03242014-135747
Date19 April 2014
CreatorsGeng, Yipeng
ContributorsPaul E. Bock, Olivier G. Boutaud, Michael Laposata, Samuel A. Santoro, Jonathan G. Schoenecker, Ingrid M. Verhamme
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03242014-135747/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0059 seconds