Return to search

Finite Element Analysis to Examine the Mechanical Stimuli Distributions in the Hip with Cam Femoroacetabular Impingement

Femoroacetabular impingement (FAI) is recognized as a pathomechanical process that leads to hip osteoarthritis (OA). It is hypothesized that mechanical stimuli are prominent at higher range of motions in hips with cam FAI (aspherical femoral head-neck deformity). Adverse loading conditions can impose elevated mechanical stimuli levels at the articulating surfaces and underlying subchondral bone, which plays a predominant mechanical role in early OA. The aim of this research was to determine the levels of mechanical stimuli within the hip, examining the effects of severe cam impingement on the onset of OA, using patient-specific biomechanics data, CT data, and finite element analysis (FEA).
Patient-specific hip joint reaction forces were applied to two symptomatic patient models and two control-matched models, segmented from patient-specific CT data. The finite element models were simulated to compare the locations and magnitudes of mechanical stimuli during two quasi-static positions from standing to squatting. Maximum-shear stress (MSS) was analyzed to determine the adverse loading conditions within the joint and strain energy density (SED) was determined to examine its effect on the initiation of bone remodelling.
The results revealed that peak mechanical stimuli concentrations were found on the antero-superior acetabulum during the squatting position, underlying to the cartilage. The MSS magnitudes were significantly higher and concentrated for the FAI patients (15.145 ± 1.715 MPa) in comparison with the MSS magnitudes for the control subjects (4.445 ± 0.085 MPa). The FAI group demonstrated a slight increase in peak SED values on the acetabulum from standing (1.005 ± 0.076 kPa) to squatting (1.018 ± 0.082 kPa). Insignificant changes in SED values were noticed for the control subjects. Squatting orients the femoral head into the antero-superior acetabulum, increasing the contact area with the cartilage and labral regions, thus resulting in higher peaks behind the cartilage on the acetabulum.
The resultant location of the peak MSS and SED concentrations correspond well with the region of initial cartilage degradation and early OA observed during open surgical dislocation. Due to the relatively low elastic modulus of the articular cartilage, loads are transferred and amplified to the subchondral bone. This further suggests that elevated stimuli levels can provoke stiffening of the underlying subchondral plate, through bone remodelling, and consequently accelerating the onset of cartilage degradation. Since mechanical stimuli results are unique to their patient-specific loading parameters and conditions, it would be difficult to determine a patient-specific threshold to provoke bone remodeling at this stage.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU./en#10393/19734
Date02 February 2011
CreatorsNg, Kwan-Ching Geoffrey
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0018 seconds