Return to search

Decoupling and Evaluation of Multiple Antenna Systems in Compact MIMO Terminals

Research on multiple antenna systems has been a hot topic in recent years due to the demands for higher transmission rate and more reliable link in rich scattering environment in wireless communications. Using multiple antennas at both the transmitter side and the receiver side increases the channel capacity without additional frequency spectrum and transmitted power. However, due to the limited space at the size-limited terminal devices, the most critical problem in designing multiple antennas is the severe mutual coupling among them. The aim of this thesis is to provide compact, decoupled and efficient multiple antenna designs for terminal devices. At the same time, we propose a simple and cost effective method in multiple antenna measurement. All these efforts contribute to the development of terminal devices for the fourth generation wireless communication. The background and theory of multiple antenna systems are introduced first, in which three operating schemes of multiple antenna systems are discussed. Critical factors influencing the performance of multiple antenna systems are also analyzed in details. To design efficient multiple antenna systems in compact terminals, several decoupling methods, including defected ground plane, current localization, orthogonal polarization and decoupling networks, are proposed. The working mechanism and design procedure of each method are introduced, and their effectiveness is compared. Those methods can be applied to most of the terminal antennas, reducing the mutual coupling by at least 6dB. In some special cases, especially for low frequency bands below 1GHz, the chassis of the device itself radiates like an antenna, which complicates the antenna decoupling. Thus, we extend the general decoupling methods to the cases when the chassis is excited. Based on the characteristic mode analysis, three different solutions are provided, i.e., optimizing antenna locations, localizing antenna currents and creating orthogonal modes. These methods are applied to mobile phones, providing a more reliable link and a higher transmission rate, which are evaluated by diversity gain and channel capacity, respectively. In order to measure the performance of multiple antenna systems, it is necessary to obtain the correlation coefficients. However, the traditional measurement technique, which requires the phase and polarization information of the radiation patterns, is very expensive and time consuming. In this thesis, a more practical and convenient method is proposed. Fairly good accuracy is achieved when it is applied to various kinds of antennas. To design a compact and efficient multiple antenna system, besides the reduction of mutual coupling, the performance of each single antenna is also important. The techniques for antenna reconfiguration are demonstrated. Frequency and pattern reconfigurable antennas are constructed, providing more flexibility to multiple antenna systems. / QC 20120604

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-96239
Date January 2012
CreatorsLi, Hui
PublisherKTH, Elektroteknisk teori och konstruktion, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-EE, 1653-5146 ; 2012:025

Page generated in 0.0025 seconds