This thesis investigates and documents fundamental studies of highway materials (asphalt engineering properties) especially on different modified asphalt binders and mixtures in order to understand failure mechanisms at low temperature and superior performance of such asphalt binders with the aim of preventing premature cracking on Ontario highways. In addition, seven asphalt binders of different compositions were used as a template for study and this research work is tailored towards Superpave® performance-based specification testing with the aim of improving asphalt pavement performance under various conditions and consequently reducing premature cracking in order to achieve long lasting highways.
Based on the actual applied pattern of Superpave® specification criteria, the mechanical responses of the binders are analyzed by extended bending beam rheometer (eBBR), tensile stress ductilometer (Petrotest DDA3®), compact tension test (Instron AsphaltPro®), double-edge-notched tension and single-edge-notched tension (MTS 810 universal testing machine) protocols. The objective of this study entails establishing and developing of a proper procedure for the testing of binders with the aim of ranking (grading) the performance after validation of laboratory and field experiments.
Analysis of the results appears to show that the premature distress on the Highway 417 trial sections can be attributed to reversible aging tendency (wax crystallization) at low temperatures coupled with low fatigue resistance of the binders. The results suggest that different polymer modifications had significant influence on the performance of asphalt mix as demonstrated from the results obtained from essential and plastic work of fracture using double-edge-notch-tension test (DENT). Crack tip opening displacement (CTOD) parameter consistently show the performing grading of asphalt binder while compact tension test protocol provides plane strain fracture toughness (K1c) which could be used to rank binders with respect to fracture resistance at low temperature. Hence, CTOD is a promising parameter which can be used to establish performance ranking of the binders. / Thesis (Master, Chemistry) -- Queen's University, 2008-05-26 09:54:23.308
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1211 |
Date | 27 May 2008 |
Creators | Togunde, Oluranti Paul |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 1225611 bytes, application/pdf |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0018 seconds