Return to search

Inhibition of PDGF receptor signaling in tumor stroma : Effects on interstitial hypertension, drug uptake and therapeutic response

<p>The role of platelet-derived growth factor (PDGF) in malignancies involves both autocrine and paracrine stimulation of cells within the tumor. The interstitial fluid pressure (IFP) is one of the forces that govern the transvascular flow of fluids. In both experimental and clinical cancers, the IFP is elevated and is thought to act as a barrier for delivery of drugs. Increasing evidence points to PDGF as a positive regulator of the interstitial fluid pressure in loose connective tissue. In this thesis, the effect of PDGF receptor inhibition on the tumor IFP, transvascular transport and efficacy of anti-cancer drugs is investigated.</p><p>All studies were performed using tumor models that display extensive tumor stroma and PDGF receptor expression restricted to stroma cells. Blocking of PDGF receptor signaling significantly reduced the tumor IFP in various tumor models. In parallel, pre-treatment with PDGF antagonists increased the tumor content of cytotoxic agents without affecting the uptake in other organs. Moreover, combination treatment with PDGF receptor inhibitors and chemotherapeutic agents dramatically enhanced the anti-tumor effects of the cytotoxic drugs, whereas treatment with only PDGF receptor inhibitors did not affect the growth of the tumors. Beneficial effects on the tumor reponse to radioimmunotherapy were also produced after concomitant administration of PDGF antagonists. Importantly, anti-angiogenic effects, changes in cell composition and increased tumor cell sensitivity to cytotoxic agents were ruled out as the cause for the synergistic effects. </p><p>Studies with different temporal scheduling of PDGF receptor inhibitors demonstrated a perfect correlation between a reduced IFP, an increased transvascular transport and an enhanced therapeutic effect of cytotoxic drugs, strongly suggesting that the phenomena are causally linked.</p><p>The studies presented herein illustrate for the first time the potential of cells in the stroma compartment as a target for efforts to treat cancer. In conclusion, a novel, possibly general, strategy to enhance the effects of conventional anti-cancer drugs has been identified.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-2633
Date January 2002
CreatorsPietras, Kristian
PublisherUppsala University, Ludwig Institute for Cancer Research, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationComprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 0282-7476 ; 1181

Page generated in 0.0018 seconds