Return to search

The Influence of Endosymbiont Metabolism on the Δ15N Value of the Pea Aphid, Acyrthosiphon pisum

The use of stable nitrogen isotope data in ecological and physiological studies is based in the assumption that nitrogen fractionates predictably during metabolism, leading to a broadly conserved pattern whereby consumers are isotopically enriched with respect to their diets. The application of stable isotope data to such studies is limited is by our understanding of the factors in that cause variability in the Δ15N values of consumers. In particular, parasites and fluid-feeders have been shown to demonstrate isotopic depletion with respect to their food sources. One factor that has been suggested to influence the Δ15N values seen in fluid-feeding consumers is the presence of endosymbionts and their contribution to nitrogen metabolism. The experiments described in this thesis directly test the hypothesis that the endosymbiotic bacteria Buchnera aphidicola is influencing the Δ15N value of the pea aphid on host alfalfa plants. Here I find that although aphids cured of their bacterial symbionts are less isotopically depleted than untreated aphids, they are still not enriched with respect to their phloem sap diet, indicating that endosymbiont metabolism alone is not responsible for the isotopic depletion observed in pea aphids. Metabolism of nitrogen in the pea aphid-Buchnera symbiosis has been well described with decades of physiological studies and with the publication of the pea aphid and Buchnera genomes. The two key features of metabolism in the pea aphid-Buchnera symbiosis are the recycling of waste ammonia by the aphid and the upgrading of the nonessential amino acids found in phloem sap to essential amino acids through collaborative metabolism between the pea aphid and Buchnera. Consistent with the described role of Buchnera in nitrogen metabolism, amino acid analyses of symbiotic and aposymbiotic aphids demonstrates an accumulation of the nonessential amino acids glutamine and glutamate and lower amounts of essential amino acids in the aposymbiotic aphids. I tested the influence of dietary amino acid profile on the Δ15N value of pea aphids and found that aphids are only isotopically depleted when they feed on diets with unbalanced amino acid compositions and are isotopically enriched when fed on a diet with a balanced profile of amino acids. I used isotopically labeled fructose to determine whether the difference in Δ15N value of pea aphids on diets of varying amino acid profiles is correlated to the amount of de novo amino acid synthesis occurring in the aphid. I found that there was a significantly higher incorporation of the labeled carbon backbone in the protein of pea aphids feeding on the unbalanced diets, supporting the idea that increased de novo amino acid synthesis are responsible for the differences in Δ15N values among aphids feeding on the two diets. The findings of this study highlight the influence of endosymbionts on the Δ15N values for pea aphids, demonstrate that dietary amino acid composition can influence the Δ15N value of pea aphids through the demand for metabolic upgrading of amino acids, and provide a model for the study of Δ15N values in systems where metabolism has been well characterized by experimental and genomic data.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1270
Date24 June 2011
CreatorsKushlan, Philip
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Theses

Page generated in 0.002 seconds