Return to search

Tunnels and Grooves : Structure-Function Studies in Two Disparate Enzymes

This thesis describes structural and binding studies in enzymes from two different  organisms: ribonucleotide reductase from Mycobacterium tuberculosis (RNR) and lipase A from Candida antarctica (CalA). RNR is viable as a target for new drugs against the causative agent of tuberculosis. The biologically active form of RNR is a heterotetramer with an α2β2 substructure. Here we show that an N-acetylated heptapeptide based on the C-terminal sequence of the smaller RNR subunit can disrupt the formation of the holoenzyme sufficiently to inhibit its function. An N-terminal truncation, an alanine scan and a novel statistical molecular design approach based on the heptapeptide Ac-Glu-Asp-Asp-Asp-Trp-Asp-Phe-OH were applied. A full-length acetylated heptapeptide was necessary for inhibition, and Trp5 and Phe7 were also essential. Exchanging the acetyl for the N-terminal Fmoc protective-group increased the binding potency ten-fold. Based on this, several truncated and N-protected peptides were evaluated in a competitive fluorescence polarization assay. The single-amino acid Fmoc-Trp inhibits the RNR holoenzyme formation with a dissociation constant of 12µM, making it an attractive candidate for further development of non-peptidic inhibitors Lipases are enzymes with major biotechnological applications. We report the x-ray structure of CalA, the first member of a novel family of lipases. The fold includes a well-defined lid as well as a classical α/β hydrolase domain. The structure is that of the closed/inactive state of the enzyme, but loop movements near Phe431 will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-109697
Date January 2009
CreatorsEricsson, Daniel
PublisherUppsala universitet, Strukturell molekylärbiologi, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 684

Page generated in 0.0025 seconds