Modulating chromatin structure is an important step in maintaining control over the eukaryotic genome. SWI/SNF, one of the complexes belonging to the growing family of ATP-dependent chromatin remodeling enzymes, is involved in controlling the expression of a number of inducible genes whose proper regulation is vital for metabolism and progression through mitosis. The mechanism by which SWI/SNF modulates chromatin structure at the nucleosome level is an important aspect of this regulation. The work in this dissertation focuses on how the Saccharomyces cerevisiae SWI/SNF complex uses the energy of ATP-hydrolysis to alter DNA-histone contacts in nucleosomes. This has been approached in a two part fashion. First, the three-dimensional structure and subunit composition of SWI/SNF complex has been determined. From this study we have identified a potential region of the SWI/SNF complex that might [be] a site for nucleosomal interaction. Second, functional analysis of the ATPase domain of Swi2p, the catalytic subunit of SWI/SNF, has revealed that a specific conserved motif is involved in coupling ATP hydrolysis to the mechanism of chromatin remodeling. These results provide a potential model for the function of the SWI/SNF chromatin remodeling complex at the nucleosome level.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1013 |
Date | 16 July 2004 |
Creators | Smith, Corey Lewis |
Publisher | eScholarship@UMMS |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | GSBS Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved., select |
Page generated in 0.0018 seconds