Return to search

Détection d'obstacles multi-capteurs supervisée par stéréovision

Parmi les nouvelles technologies envisagées pour le développement d'aides à la conduite innovantes, la détection d'obstacles tient une place importante. Elle permet en effet d'anticiper d'éventuelles collisions, pour un gain réel en sécurité. Cette thèse propose d'aborder le thème de la détection d'obstacles par une approche multi-capteurs qui se veut robuste et générique, grâce au rôle central conféré à la stéréovision. Dans la méthodologie proposée, les différents capteurs (capteur stéréoscopique, télémètre laser, capteur d'identification optique) fournissent des hypothèses de détection sous la forme de volumes d'intérêt dans l'espace de disparité lié aux images stéréoscopiques. Un traitement localisé dans chacune de ces régions permet ensuite de valider et de caractériser ces hypothèses. Nous proposons dans cette thèse la description de cette méthodologie, trois méthodes de création d'hypothèses de détection et des critères pour la validation de celles-ci. Par ailleurs, des aspects pragmatiques liés à la mise en oeuvre de cette approche sont abordés, comme les choix algorithmiques permettant l'obtention en temps réel de données exploitables pour la stéréovision et l'évaluation des méthodes proposées. Enfin, nous présentons trois applications fonctionnant dans des véhicules expérimentaux et anticipant sur de futures aides à la conduite.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00656864
Date13 June 2008
CreatorsPerrollaz, Mathias
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds