The project deals with artificial neural networks. After designing and debugging the test data set and the training sample set, we created a multilayer perceptron network in the Neural NetworkToolbox (NNT) of Matlab. When creating networks, we used different training algorithms and algorithms improving the generalization of the network. When creating a radial basis network, we did not use the NNT, but a specific source code in Matlab was written. Functionality of neural networks was tested on simple training and testing patterns. Realistic training data were obtained by the simulation of twelve monoconic antennas operating in the frequency range from 2 to 6 GHz. Antennas were located inside a mathematical model of Octavia II. Using CST simulations, electromagnetic fields in a car were obtained. Trained networks are described by regressive characteristics andthe mean square error of training. Algorithms improving generalization are applied on the created and trained networks. The performance of individual networks is mutually compared.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:220578 |
Date | January 2014 |
Creators | Kostka, Filip |
Contributors | Škvor, Zbyněk, Raida, Zbyněk |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds