This study concerns the development of the peridynamic strain energy density function for a Neo-Hookean type membrane under equibiaxial, planar and uniaxial loading conditions. The material parameters for each loading case are determined by equating the peridynamic strain energy to those of the classical continuum mechanics. Therefore, the peridynamic equations of motion are derived based on the Neo-Hookean model under the assumption of incompressibility. Numerical results concern the deformation of a membrane without and with a defect in the form of a hole, an inclusion and a crack under equibiaxial, planar and uniaxial loading conditions. As part of the verification process, the peridynamic predictions are compared with those of finite element analysis. For all defect types and loading conditions, the comparisons indicate excellent agreement.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/595809 |
Date | January 2016 |
Creators | Bang, Dongjun |
Contributors | Madenci, Erdogan, Madenci, Erdogan, Frantziskonis, George N., Missoum, Samy, Wu, Xiaoyi |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.003 seconds