Return to search

Densidade do conjunto de endomorfismos com medida maximizante suportada em órbita periódica / Density of the set of endomorphisms with maximizing measure suported on a periodic orbit

Demonstramos o seguinte teorema: Seja M uma variedade Riemanniana compacta, conexa e sem bordo. Dados um endomorismo f : M ightarrow M, uma função contínua \\phi: M ightarrow R e \\epsilon > 0, então existe um endomorísmo \\tilde f : M ightarrow M tal que d(f; \\tide f) = \\max_{x \\in M} d(f(x); \\tilde f(x)) < \\epsilon, e existe uma medida \\phi-maximizante para \\tilde f que está suportada em uma orbita periodica. Este teorema e uma generalização dos resultados obtidos por S. Addas-Zanatta e F. Tal. / We prove the following theorem: Let M be a bondaryless, compact and connected Riemannian Manifold. Given an endomorphism f on M, a continuous function \\phi : M ightarrow R and \\epsilon > 0, then there exist an endomorphism \\tilde f on M with d(f; \\tilde f) < \\epsilon such that, some \\phi-maximizing measure for \\tilde f is supported on a periodic orbit. This theorem is a generalization of the results obtained by S. Addas-Zanatta and F. Tal.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-17062012-002505
Date26 April 2012
CreatorsJuliano dos Santos Gonschorowski
ContributorsFabio Armando Tal, Ricardo dos Santos Freire Junior, Eduardo Garibaldi, Artur Oscar Lopes, Salvador Addas Zanata
PublisherUniversidade de São Paulo, Matemática Aplicada, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds