Return to search

Development of vacuum insulation panel with low cost core material

Buildings consume around half of the UK's total energy consumption and are responsible for almost 50% of UK's total carbon dioxide (CO2) emissions. Use of high thermal resistance insulation in buildings is critical to save the substantial amounts of space heating energy lost through building fabric. Conventional building insulation materials have higher thermal conductivity values ranging from 40 mWm-1K-1 (Glass fibre) - 26 mWm-1K-1 (Polyurethane foam) and require larger thicknesses to achieve stringent building regulation requirements which may not be feasible due to techno-economic constraints. Vacuum Insulation Panel (VIP) is a relatively new insulation for building applications that offers 5-8 times higher thermal resistance and can achieve significant space savings in buildings. VIPs are produced as a rigid panel comprising inner core board laminated in an outer high barrier envelope under evacuated conditions (< 5mbar). However, the main challenge for large scale acceptance of VIPs in building applications is their higher cost. VIPs have been shown to have an approximately 10 times longer payback compared to conventional EPS insulation due to their high initial cost. Expensive materials currently being used for VIP manufacturing such as fumed silica contribute to high cost of VIPs and it is critical to identify alternative low cost materials for VIP components to overcome the challenge of high cost. The aim of this thesis was to develop an alternative low cost material and investigate its suitability for use as VIP core. Expanded perlite, a low cost material was identified as a replacement of expensive fumed silica in a VIP core. Composite samples containing expanded perlite, fumed silica, silicon carbide (SiC) and polyester fibres were developed by dry mixing of the constituents in different mass ratios and their different properties were experimentally measured to identify optimum composition of composite. Gaseous thermal conductivity at different pressures was calculated from the pore size data obtained using Mercury Intrusion Porosimetry (MIP), gas adsorption and electron microscopy. Radiative conductivity of composite samples was measured using Fourier Transform Infrared (FTIR) to ascertain the opacifying effect of expanded perlite and opacifier (SiC). Centre of panel thermal conductivity of core boards of size 100mm x 100mm made of composite material at atmospheric pressure was measured by using a small guarded hot plate device. Average pore diameter values of expanded perlite decreased with the partial filling of fumed silica aggregates and was found to be in the range of 150-300 nm yielding lower gaseous conductivity values of 1.2-2.1 mWm-1K-1 at 100mbar and became negligible upon further decreasing pressures below 10 mbar. Core boards made of optimised composite containing 30% expanded perlite and 50% fumed silica along with SiC and polyester fibres was found to achieve centre of panel thermal conductivity of 28 mWm-1K-1 at atmospheric pressure and the average radiative conductivity of 0.67 mWm-1K-1 at 300K with its gaseous thermal conductivity at 1 mbar being 0.016 mWm-1K-1. According to the results of the thesis VIP prototypes consisting of core made with optimised composite consisting (50 mass% of fumed silica, 30 mass% of expanded perlite along with 8 mass% of fibre and 12 mass% of SiC) yielded centre of panel thermal conductivity of 7.4-7.6 mWm-1K-1 at pressure of 0.53-0.64 mbar. Opacifying properties of expanded perlite were observed and quantified. Expanded perlite reduced the radiative conductivity of the composite requiring smaller quantities of high density opacifiers such as SiC. For sample containing no expanded perlite, average radiative conductivity was calculated to be 1.37 mWm-1K-1 and radiative conductivity values decreased to 1.12 mWm-1K-1, 0.67 mWm-1K-1, 0.63 mWm-1K-1 and 0.50 mWm-1K-1 with mass ratio of expanded perlite 20%, 30%, 40% and 60% respectively. It was concluded that the solid conductivity of prototypes VIPs was 1.8-2 times higher compared to those of commercially available VIPs and is the main reason for higher centre of panel thermal conductivity.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:675888
Date January 2015
CreatorsAlam, Mahmood
ContributorsSingh, H.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/11658

Page generated in 0.0014 seconds