The predicted increase in atmospheric temperatures is expected to affect the turnover of soil organic carbon in permafrost soils through modifications of the soil thermal regime. However, the tundra biome is formed of a mosaic of diverse landscape types with differing patterns of soil organic carbon storage and partitioning. Among these, differences in e.g. vegetation diversity and soil movements due to freeze-thaw processes are of main importance for assessing potential C remobilization under a changing climate. In this study, we described the storage of soil organic carbon (SOC) and the aboveground phytomass carbon in relation to geomorphology and periglacial features for two areas on Taymir Peninsula (Arctic Russia). An average of 29.5 kg C m-2, calculated by upscaling with a land cover classification, is stored in the upper soil meter at these two study sites. The mean C phytomass storage amounts to ca.0.406 Kg C m-2, or only 1.38% of the total SOC storage. The topography, at different scales, plays an important role in the carbon partitioning. High amounts of soil organic carbon are found in highland areas and within the patterned ground features found in peatlands. The highest amounts of aboveground phytomass carbon are found in deciduous shrubs and moss layers. The large variability in carbon distribution within land cover types among the sites reveals the challenge of upscaling the carbon storage values over the Arctic and thus highlight the necessity to carry out detailed field inventories in this region.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-94714 |
Date | January 2012 |
Creators | Ramage, Justine |
Publisher | Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds