Lead halide perovskites are a class of soft ionic semiconductors characterized by strong excitonic absorption and long carrier lifetimes. Recent studies suggest that electrons and holes in these materials interact with longitudinal optical phonons to form large polarons on subpicosecond time-scales. The same interaction is responsible for hot electron cooling via phonon emission and is thought to be screened by large polaron formation resulting in the long-lived hot electrons observed in methylammonium lead iodide perovskite. Time-resolved two-photon photoemission is used to follow the initial hot electron cooling and large polaron formation dynamics in single-crystal cesium lead bromide perovskite at 80 K and 300 K. The initial relaxation rates are found to be weakly temperature-dependent and are attributed to the cooling of unscreened hot electrons by the emission of longitudinal optical phonons. The large polaron formation times, however, are inferred to be approximately three times faster at 300 K. The decrease in polaron formation time with temperature is correlated with the broadening in phonon linewidths, suggesting that disorder can assist large polaron formation. In addition, the initial electron relaxation is faster than large polaron formation explaining the absence of long-lived hot electrons in cesium lead bromide perovskite as opposed to methylammonium lead iodide perovskite where the two processes are competitive. The second part of this thesis focuses on the strong light-matter interaction in nanowire waveguide geometries of single-crystal lead halide perovskites which are well known for their emission tunability and low lasing thresholds under pulsed optical excitation. Using fluorescence microscopy, it is found that the luminescence from single-crystal cesium lead bromide perovskite nanowires is dominated by sub-bandgap modes called exciton-polaritons, i.e. hybridized exciton-photon states. A one-dimensional exciton-polariton model reproduces the observed modes at the bottleneck of the lower polariton branch with a Rabi splitting of about 200 milli-electron volts. As the power density increases under continuous excitation, the exciton-polaritons undergo Bose-stimulated scattering and a super-linear increase in mode intensity is observed. This is the first demonstration of continuous-wave lasing in lead halide perovskite nanowires and reveals an inherently strong light-matter interaction in lead halide perovskites that can be used for continuous-wave optoelectronic applications. These findings corroborate the role of dynamic screening in unifying these two regimes of carrier-carrier interactions responsible for the strong absorption and subsequent carrier protection. We also demonstrate the viability of lead halide perovskite nanowires for future optoelectronics.
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8X654FV |
Date | January 2018 |
Creators | Evans, Tyler James Swenson |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.1496 seconds