Made available in DSpace on 2016-06-02T19:03:59Z (GMT). No. of bitstreams: 1
6340.pdf: 3337556 bytes, checksum: 693a6a9cfb4dc2a26651724099fcf890 (MD5)
Previous issue date: 2014-02-28 / Financiadora de Estudos e Projetos / Recommender Systems have a very well defined function: recommend something to someone. Through Artificial Intelligence techniques, more particularly from areas such as Data Mining and Machine Learning, it is possible to build recommendation systems. These systems will analyze large amounts of data and will inform users about some items that will probably interest them. However, some limitations of the recommender systems, which are sometimes, caused by the Mining or Learning models themselves or by the lack of available data make them computationally expensive or inaccurate. Besides, recommender systems in real environments are dynamic: data change over time or with new ratings, new users, new items or when user updates previous ratings. The Never Ending-Learning Approach (NEL) aims at a self-supervised and self-reflexive learning to mainly maximize learning of a system based on data from several sources, algorithms that can cooperate to make a better knowledge base considering the dynamic of real learning problems: learning improves along the time. As mentioned before, recommender systems are dynamic and depend on data between user and items. In order to minimize this dependency and to provide meaningful and useful results to users, this work presents a Recommender System approach guided by NEL Principles. Results show that it is possible to minimize or delay the data dependency through classifiers coupling techniques and concept deviation control. Due to that, it is possible to start with little data from a recommender system that will be dynamic and will receive new information. These new information will help even more in controlling the concept deviation and promoting the most useful recommendations. Then, this thesis presents how the Recommender System guided by NEL principles can contribute to the state of the art in recommender systems and implement a system with practical results through the Never-Ending Learning Approach. / Os Sistemas de Recomendação possuem uma função muito bem definida: recomendar algo a alguém. Através de técnicas de Inteligência Artificial, mais particularmente de áreas como a Mineração de Dados e o Aprendizado de Máquina é possível construir Sistemas de Recomendação que analisem grandes volumes de dados e consigam predizer aos usuários algo que provavelmente irá lhes interessar. No entanto, algumas limitações dos Sistemas de Recomendações, causadas as vezes pelos próprios modelos de Mineração ou Aprendizado utilizados ou pela escassez dos dados disponíveis, os tornam computacionalmente caros ou imprecisos. Além disto, Sistemas de Recomendação em ambientes reais são dinâmicos, ou seja, os dados mudam com o passar do tempo seja com novas avaliações, novos usuários, novos itens ou mesmo atualizações de avaliações anteriores. A abordagem de Aprendizado Sem-Fim (SASF) visa um aprendizado autossupervisionado e autorreflexivo para, sobretudo, maximizar o aprendizado de um sistema com base em dados de fontes diversas, algoritmos que cooperem entre si para melhor modelar uma base de conhecimento e considerar a dinamicidade de problemas reais de aprendizado: Aprender amadurece com o tempo. Como já dito, sistemas de recomendação são dinâmicos e dependem de dados entre usuários e itens. Para minimizar esta dependência e prover resultados significativos e úteis aos usuários é apresentada neste trabalho uma abordagem de Sistema de Recomendação orientada pelos Princípios do Aprendizado Sem-Fim. Os resultados obtidos sugerem que é possível minimizar ou retardar a dependência de dados através de técnicas de acoplamento de classificadores e do controle do desvio de conceito. Com isto, é possível atuar com poucos dados de um sistema de recomendação que será dinâmico e receberá novas informações. Estas novas informações auxiliarão ainda mais no controle do desvio de conceito e na promoção de recomendações mais úteis. Por tudo isto, este trabalho apresenta como proposta o desenvolvimento de uma Abordagem para Sistemas de Recomendação baseada no Aprendizado Sem Fim, como forma de contribuir para o estado da arte em sistemas de recomendação e de implementar um sistema com resultados práticos através do Aprendizado sem Fim.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/292 |
Date | 28 February 2014 |
Creators | Gotardo, Reginaldo Aparecido |
Contributors | Hruschka Júnior, Estevam Rafael |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Ciência da Computação, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0104 seconds