Return to search

Measurement and Modeling of Fluid-Fluid Miscibility in Multicomponent Hydrocarbon Systems

Carbon dioxide injection has currently become a major gas injection process for improved oil recovery. Laboratory evaluations of gas-oil miscibility conditions play an important role in process design and economic success of field miscible gas injection projects. Hence, this study involves the measurement and modeling of fluid-fluid miscibility in multicomponent hydrocarbon systems. A promising new vanishing interfacial tension (VIT) experimental technique has been further explored to determine fluid-fluid miscibility. Interfacial tension measurements have been carried out in three different fluid systems of known phase behavior characteristics using pendent drop shape analysis and capillary rise techniques. The quantities of fluids in the feed mixture have been varied during the experiments to investigate the compositional dependence of fluid-fluid miscibility.
The miscibility conditions determined from the VIT technique agreed well with the reported miscibilities for all the three standard fluid systems used. This confirmed the sound conceptual basis of VIT technique for accurate, quick and cost-effective determination of fluid-fluid miscibility. As the fluid phases approached equilibrium, interfacial tension was unaffected by gas-oil ratio in the feed, indicating the compositional path independence of miscibility. Interfacial tension was found to correlate well with solubility in multicomponent hydrocarbon systems. The experiments as well as the use of existing computational models (equations of state and Parachor) indicated the importance of counter-directional mass transfer effects (combined vaporizing and condensing mass transfer mechanims) in fluid-fluid miscibility determination.
A new mechanistic Parachor model has been developed to model dynamic gas-oil miscibility and to determine the governing mass transfer mechanism responsible for miscibility development in multicomponent hydrocarbon systems. The proposed model has been validated to predict dynamic gas-oil miscibility in several crude oil-gas systems. This study has related various types of developed miscibility in gas injection field projects with gas-oil interfacial tension and identified the multitude of roles played by interfacial tension in fluid-fluid phase equilibria. Thus, the significant contributions of this study are further validation of a new measurement technique and development of a new computational model for gas-oil interfacial tension and miscibility determination, both of which will have an impact in the optimization of field miscible gas injection projects.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07132005-091607
Date14 July 2005
CreatorsAyirala, Subhash C.
ContributorsDandina N. Rao, Anuj Gupta, Donald Dean Adrian, Karsten E. Thompson, Edward B. Overton
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07132005-091607/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.012 seconds