In der vorliegenden Dissertation wird eine Beschreibung der Phasendynamik
irregulärer Oszillationen und deren Wechselwirkungen vorgestellt. Hierbei
werden chaotische und stochastische Oszillationen autonomer dissipativer Systeme
betrachtet. Für eine Phasenbeschreibung stochastischer Oszillationen müssen zum
einen unterschiedliche Werte der Phase zueinander in Beziehung gesetzt werden,
um ihre Dynamik unabhängig von der gewählten Parametrisierung der Oszillation
beschreiben zu können. Zum anderen müssen für stochastische und chaotische
Oszillationen diejenigen Systemzustände identifiziert werden, die sich in der
gleichen Phase befinden.
Im Rahmen dieser Dissertation werden die Werte der Phase über eine gemittelte
Phasengeschwindigkeitsfunktion miteinander in Beziehung gesetzt. Für
stochastische Oszillationen sind jedoch verschiedene Definitionen der mittleren
Geschwindigkeit möglich. Um die Unterschiede der Geschwindigkeitsdefinitionen
besser zu verstehen, werden auf ihrer Basis effektive deterministische Modelle
der Oszillationen konstruiert. Hierbei zeigt sich, dass die Modelle
unterschiedliche Oszillationseigenschaften, wie z. B. die mittlere Frequenz
oder die invariante Wahrscheinlichkeitsverteilung, nachahmen. Je nach Anwendung
stellt die effektive Phasengeschwindigkeitsfunktion eines speziellen Modells
eine zweckmäßige Phasenbeziehung her. Wie anhand einfacher Beispiele erklärt
wird, kann so die Theorie der effektiven Phasendynamik auch kontinuierlich und
pulsartig wechselwirkende stochastische Oszillationen beschreiben.
Weiterhin wird ein Kriterium für die invariante Identifikation von Zuständen
gleicher Phase irregulärer Oszillationen zu sogenannten generalisierten
Isophasen beschrieben: Die Zustände einer solchen Isophase sollen in ihrer
dynamischen Entwicklung ununterscheidbar werden. Für stochastische
Oszillationen wird dieses Kriterium in einem mittleren Sinne interpretiert. Wie
anhand von Beispielen demonstriert wird, lassen sich so verschiedene Typen
stochastischer Oszillationen in einheitlicher Weise auf eine stochastische
Phasendynamik reduzieren. Mit Hilfe eines numerischen Algorithmus zur Schätzung
der Isophasen aus Daten wird die Anwendbarkeit der Theorie anhand eines Signals
regelmäßiger Atmung gezeigt. Weiterhin zeigt sich, dass das Kriterium der
Phasenidentifikation für chaotische Oszillationen nur approximativ erfüllt
werden kann. Anhand des Rössleroszillators wird der tiefgreifende Zusammenhang
zwischen approximativen Isophasen, chaotischer Phasendiffusion und instabilen
periodischen Orbits dargelegt.
Gemeinsam ermöglichen die Theorien der effektiven Phasendynamik und der
generalisierten Isophasen eine umfassende und einheitliche Phasenbeschreibung
irregulärer Oszillationen. / Many natural systems embedded in a complex surrounding show irregular
oscillatory dynamics. The oscillations can be parameterized by a phase variable
in order to obtain a simplified theoretical description of the dynamics.
Importantly, a phase description can be easily extended to describe the
interactions of the system with its surrounding. It is desirable to define an
invariant phase that is independent of the observable or the arbitrary
parameterization, in order to make, for example, the phase characteristics
obtained from different experiments comparable.
In this thesis, we present an invariant phase description of irregular
oscillations and their interactions with the surrounding. The description is
applicable to stochastic and chaotic irregular oscillations of autonomous
dissipative systems. For this it is necessary to interrelate different phase
values in order to allow for a parameterization-independent phase definition.
On the other hand, a criterion is needed, that invariantly identifies the
system states that are in the same phase.
To allow for a parameterization-independent definition of phase, we interrelate
different phase values by the phase velocity. However, the treatment of
stochastic oscillations is complicated by the fact that different definitions
of average velocity are possible. For a better understanding of their
differences, we analyse effective deterministic phase models of the
oscillations based upon the different velocity definitions. Dependent on the
application, a certain effective velocity is suitable for a
parameterization-independent phase description. In this way, continuous as well
pulse-like interactions of stochastic oscillations can be described, as it is
demonstrated with simple examples.
On the other hand, an invariant criterion of identification is proposed that
generalizes the concept of standard (Winfree) isophases. System states of the
same phase are identified to belong to the same generalized isophase using the
following invariant criterion: All states of an isophase shall become
indistinguishable in the course of time. The criterion is interpreted in an
average sense for stochastic oscillations. It allows for a unified treatment of
different types of stochastic oscillations. Using a numerical estimation
algorithm of isophases, the applicability of the theory is demonstrated by a
signal of regular human respiration. For chaotic oscillations, generalized
isophases can only be obtained up to a certain approximation. The intimate
relationship between these approximate isophase, chaotic phase diffusion, and
unstable periodic orbits is explained with the example of the chaotic roes oscillator.
Together, the concept of generalized isophases and the effective phase theory
allow for a unified, and invariant phase description of stochastic and chaotic
irregular oscillations.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5011 |
Date | January 2010 |
Creators | Schwabedal, Justus Tilmann Caspar |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie |
Source Sets | Potsdam University |
Language | German |
Detected Language | German |
Type | Text.Thesis.Doctoral |
Format | application/pdf |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0032 seconds