For photographers to capture good pictures of their subjects, the lighting conditions must be taken into account and adjusted for accordingly. The same holds true
for a satellite attempting to photograph another object in space: it must know the
lighting conditions to adjust camera settings and position itself properly to take the
best photograph. This thesis presents a photon mapping based algorithm to compute
a physically accurate representation of the illumination of objects in orbit around the
Earth, taking into account the effects that cause refraction in the atmosphere. I also
discuss the assumptions that I have made to utilize the algorithm in an interactive
3D visualization tool, which I implemented to view the illumination on objects at
arbitrary positions in space. Finally, I show that the photon mapping method offers
improvements over simpler methods of computing illumination.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-05-470 |
Date | 2009 May 1900 |
Creators | Penney, Jonathan |
Contributors | Akleman, Ergun |
Source Sets | Texas A and M University |
Language | English |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | application/pdf |
Page generated in 0.002 seconds