Return to search

A Non Invasive Complex Representation of Muscle: A Description through BOLD Fractal Dimension, Phase Space, and Concurrent EMG Metrics / Understanding and Describing Muscle Complexity

An investigation into the complex function of muscle using non-invasive imaging and novel analytical approaches. / The human body is inherently complex as seen through the structural organization of muscle in terms of its contractile subunit organization and scaling, innervation patterns, and vascular organization. However, the functional complexity of muscle such as its state of oxygenation, metabolism or blood-flow has been less well explored. Thus in an effort to improve our understanding of muscle, blood oxygenation level dependent (BOLD) magnetic resonance imaging of the lower leg, at rest and during a variety of weighted plantar-flexion paradigms, at 40% maximal voluntary contraction, was employed. Prior to experimentation, on 11 healthy subjects, an ergometer and electromyogram (EMG), suitable for use within the MRI, were constructed to allow for concurrent exercise and image acquisition. After collecting muscle BOLD data, four novel techniques were using to describe muscle function. The first technique used the fractal dimension, a measure of complexity, conveying the rate of variation of muscle blood flow at rest. This technique was able to determine differences between the muscles of lower leg, which have varying distributions of muscle fibre types based on function. The second exploratory technique was the use of the phase space, which provides insight into state/state-transitions of a system over time. The phase space representation of the BOLD signal provided novel insight into the muscle activation state. It demonstrated that muscle has more than the two blood flow states of reduced levels at rest and increased levels when exercising. The third technique involved using a signal saturation (SAT) region, proximal to the imaging region, to mitigate the arterial in-flow effects to more accurately represent muscle activation. By observing the correlation between the ideal reference and recorded signal, the acquisition with the arterial suppression improved the assessment of what regions in the muscle were active in the range borderline activation, which has the highest uncertainty. The final outlook on muscle behaviour involved using measures of fatigue from the collected EMG data to develop novel metrics of fatigue based on the BOLD signal. Concurrent BOLD and EMG of the anterior compartment of the lower leg during a plantar-flexion block design, demonstrated that the change in blood-flow between rest and contracted states is an excellent indicator of muscle fatigue. The primary outlook of this thesis is to provide a unique data collection and analytic framework to describe muscle behaviour, which was achieved using non-invasive measures with a complex outlook. / Thesis / Master of Applied Science (MASc) / The human body is complex, and an incredible amount of research has been done to better understand it. Specifically, muscle is built and works in a complex way to allow us to move and perform everyday tasks. There are many diseases that affect how a muscle works, which is why there is a need to describe muscle performance when it is healthy and unhealthy. In this research, muscle behaviour is explored by taking pictures of the leg. From these pictures the blood flow in the calf and shin was measured both when staying still and when performing exercise. Four new techniques were created to describe the blood flow in the leg. The first technique measured how complex the muscle activity is, while staying still. If blood-flow changes a lot in a short amount of time, it is complex. This showed that the different components of muscle, either used for stamina or power, receive blood differently. The second technique used a different way of looking at the muscle to show that there are many different rates and amounts of blood-flow in the muscle. It revealed that muscle has more than the two blood flow options of 1) the normal level when resting and 2) the increased level when exercising. The third technique involved using an image filter to get a clean image of the muscle without the blood vessels affecting or misrepresenting the image. It was able to show what muscle regions were involved in exercise more accurately than before. The final technique involved measuring muscle electricity and blood flow at the same time, to find out when the muscle was exhausted. It demonstrated that muscle, when exhausted, showed larger changes in blood flow when going from resting to exercising. Overall, this research described how muscle performs in healthy individuals using new techniques. These techniques can now be used to compare healthy muscle to damaged/diseased muscle to determine how the muscle is recovering or to diagnose muscular disease.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/27855
Date11 1900
CreatorsMcGillivray, Joshua
ContributorsNoseworthy, Michael, Biomedical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0018 seconds