Return to search

Searching for Supersymmetry at the LHC: Studies of Sleptons and Stops

Searches of supersymmetry at the LHC have put stringent constraints on the strong production of squarks and gluinos. Current results exclude colored particles with masses up to roughly 1 TeV. To fully explore the discovery potential of the LHC, we study the challenging signals that are hidden by Standard Model backgrounds but with masses accessible by the LHC. These particles include the sleptons with a weak production cross section, and stops that are hidden by large top-antitop backgrounds. In this dissertation, I explore the collider phenomenology of sleptons and stops at the LHC. Sleptons can be produced at the LHC either through cascade decay or via Drell-Yan pair production. For the cascade decay, we studied neutralino-chargino associated production, with the subsequent decay through on shell sleptons resulting in a trilepton plus missing transverse energy signal. The invariant mass from the neutralino decay has a distinctive triangle shape with a sharp kinematic cutoff. We utilized this feature and obtained the effective cross section that is needed for a 5-sigma discovery of sleptons. We apply these results to the MSSM and find a discovery reach for left-handed sleptons which extends beyond the reach expected in usual Drell-Yan studies. Slepton pair production searches on the other hand, have limited reach at the LHC. The slepton decay branching fractions, however, depend on the composition of the lightest supersymmetric particle (LSP). We extend the experimental analysis for data collected thus far to include different scenarios for the composition of the LSP. We find that the LHC slepton reach is enhanced up to a factor of 2 for a non-Bino-LSP. We present the 95% C.L. exclusion limits and 5-sigma discovery reach for sleptons at the 8 and 14 TeV LHC considering Bino-, Wino-, or Higgsino-like LSPs. Current stop searches at the LHC focus on signals with top-antitop plus missing transverse energy. However, in many regions of SUSY parameter space, these decay modes are not dominant, leading to weakened experimental limits on stops. We identify stop decays that can have significant branching fractions to new final states resulting in new signal channels to observe. We investigate stop pair production by considering the channel of stop to top-higgs-LSP and stop to bottom-W-LSP leading to a signal of 4 b-jets, 2 jets, 1 lepton and missing transverse energy. We present the 95% C.L. exclusion limits and 5-sigma discovery reach for stops at the 14 TeV LHC.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/347184
Date January 2014
CreatorsEckel, Jonathan Daniel
ContributorsSu, Shufang, Eisenstein, Daniel, Su, Shufang, Stafford, Charles, Toussaint, Doug, Varnes, Erich
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds