Return to search

Forensic DNA phenotyping and massive parallel sequencing

Indiana University-Purdue University Indianapolis (IUPUI) / In the forensic science community, there is an immense need for tools to help assist investigations where conventional DNA profiling methods have been non-informative. Forensic DNA Phenotyping (FDP) aims to bridge that gap and aid investigations by providing physical appearance information when other investigative methods have been exhausted. To create a “biological eye witness”, it becomes necessary to constantly improve these methods in order to develop a complete and accurate image of the individual who left the sample. To add to our previous prediction systems IrisPlex and HIrisPlex, we have developed the HIrisPlex-S system for the all-in-one combined prediction of eye, hair, and skin color from DNA. The skin color prediction model uses 36 variants that were recently proposed for the accurate prediction of categorical skin color on a global scale, and the system is completed by the developmental validation of a 17-plex capillary electrophoresis (CE) genotyping assay that is run in conjunction with the HIrisPlex assay to generate these genotypes. The predicted skin color output includes Very Pale, Pale, Intermediate, Dark and Dark-to-Black categories in addition to categorical eye (Blue, Intermediate, and Brown) and hair (Black, Brown, Blond, and Red) color predictions. We demonstrate that the HIrisPlex-S assay performs in full agreement with guidelines from the Scientific Working Group on DNA Analysis Methods (SWGDAM), achieving high sensitivity levels with a minimum 63pg DNA input. In addition to adding skin color to complete the pigmentation prediction system termed HIrisPlex-S, we successfully designed a Massively Parallel Sequencing (MPS) assay to complement the system and bring Next Generation Sequencing (NGS) to the forefront of forensic DNA analyses methods. Using Illumina’s MiSeq system enables the generation of HIrisPlex-S’s 41 variants using sequencing data that has the capacity to
xiii

better deconvolute mixtures and perform with even more sensitivity and accuracy. This transition opens the door for a plethora of new ways in which this physical appearance assay can grow as sequencing technology is not limited by variant number; therefore, in essence many more traits have the potential to be included in this one assay design. For now, the HIrisPlex-S design of 41 variants using MPS is being fully assessed according to SWGDAM validated guidelines; therefore, this design paves the way for Forensic DNA Phenotyping to be used in any forensic laboratory. This new and improved HIrisPlex-S system will have a profound impact on casework, missing persons cases, and anthropological cases, as it is relatively inexpensive to run, HIrisPlex-S is easy to use, developmentally validated and one of the largest systems freely available online for physical appearance prediction from DNA using the freely available online web tool found at https://hirisplex.erasmusmc.nl/. Lastly, moving forward in our aim to include additional traits for prediction from DNA, we contributed to a large-scale research collaboration to unearth variants associated with hair morphology. 1026 samples were successfully sequenced using an inhouse MPS design at 91 proposed hair morphological loci. From this reaction, we were able to contribute to the identification of significant correlations between the SNPs rs2219783, rs310642 and rs80293268 with categorical hair morphology: straight, wavy or curly.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/15108
Date04 December 2017
CreatorsBreslin, Krystal
ContributorsWalsh, Susan
Source SetsIndiana University-Purdue University Indianapolis
Detected LanguageEnglish
TypeThesis

Page generated in 0.0104 seconds