Return to search

Model of detection of phishing URLsbased on machine learning

Background: Phishing attacks continue to pose a significant threat to internetsecurity. One of the most common forms of phishing is through URLs, whereattackers disguise malicious URLs as legitimate ones to trick users into clickingon them. Machine learning techniques have shown promise in detecting phishingURLs, but their effectiveness can vary depending on the approach used.Objectives: The objective of this research is to propose an ensemble of twomachine learning techniques, Convolutional Neural Networks (CNN) and MultiHead Self-Attention (MHSA), for detecting phishing URLs. The goal is toevaluate and compare the effectiveness of this approach against other methodsand models.Methods: a dataset of URLs was collected and labeled as either phishing orlegitimate. The performance of several models using different machine learningtechniques, including CNN and MHSA, to classify these URLs was evaluatedusing various metrics, such as accuracy, precision, recall, and F1-score.Results: The results show that the ensemble of CNN and MHSA outperformsother individual models and achieves an accuracy of 98.3%. Which comparing tothe existing state-of-the-art techniques provides significant improvements indetecting phishing URLs.Conclusions: In conclusion, the ensemble of CNN and MHSA is an effectiveapproach for detecting phishing URLs. The method outperforms existing state-ofthe-art techniques, providing a more accurate and reliable method for detectingphishing URLs. The results of this study demonstrate the potential of ensemblemethods in improving the accuracy and reliability of machine learning-basedphishing URL detection.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-24946
Date January 2023
CreatorsBurbela, Kateryna
PublisherBlekinge Tekniska Högskola, Institutionen för datavetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds