The haloacid dehalogenase (HAD) family of phosphatases is an ancient, ubiquitous group of enzymes, and their emerging role in human health and disease make them attractive targets for detailed analyses.
This thesis comprises the biochemical and structural characterization of chronophin, an HAD-type
phosphatase, which has been shown to act on Ser3-phosphorylated cofiln-1, a key regulator of actin dynamics, and on the Ser/Thr-phosphorylated steroid receptor co-activator 3 (SRC-3). Besides being a specific phosphoprotein phosphatase, chronophin also acts on the small molecule pyridoxal 5'-phosphate (PLP, vitamin B6), implying that chronophin serves as a regulator of a variety important physiological pathways. The analysis of chronophin was performed on different levels, ranging from intrinsic regulatory mechanisms, such as the allosteric regulation via dimerization or the characterization of specificity determinants, to modes of extrinsic modulation, including the association with putative interacting proteins or the generation of chronophin-specific inhibitors.
The association of the previously identified putative chronophin interactors calcium- and integrinbinding protein 1 (CIB1) and calmodulin was investigated using recombinantly expressed and purified proteins. These studies revealed that the interaction of chronophin with CIB1 or calmodulin is mutually exclusive and regulated by calcium. Neither CIB1 nor calmodulin had an effect on the in vitro chronophin phosphatase activity towards PLP or phospho-cofilin-1, but might regulate other functions of this important phosphatase.
The role of chronophin dimerization was studied by generating a constitutively monomeric variant,
which showed reduced PLP hydrolyzing activity. X-ray crystallographic studies revealed that dimerization is essential for the positioning of the substrate specificity loop in chronophin, unraveling a previously unknown mechanism of allosteric regulation through a homophilic interaction. This mechanism potentially applies to other enzymes of the C2a subfamily of HAD-type phosphatases, as all structurally characterized members show a conserved mode of dimerization.
The general determinants of substrate specificity in the C2a subfamily of HAD phosphatases were
investigated by performing domain swapping experiments with chronophin and its paralog AUM and
subsequent biochemical analyses of the hybrid proteins. The X-ray crystallographic structure
determination of the chronophin catalytic domain equipped with the AUM capping domain revealed the first partial structure of AUM. This structural information was then used in subsequent studies that analyzed the divergent substrate specificities of AUM and chronophin in an evolutionary context.
Finally, a set of four chronophin inhibitors were generated based on the structure of PLP and
characterized biochemically, showing moderate inhibitory effects with IC50-values in the micromolar range. These compounds nevertheless constitute valuable tools for future in vitro experiments, such as studies concerning the structure-function relationship of chronophin as a PLP phosphatase. In addition, the crystal structure of one inhibitor bound to chronophin could be solved. These results provide the basis for the further development of competitive chronophin inhibitors with increased specificity and potency. / HAD Phosphatasen gehören zu einer phylogenetisch alten Proteinfamilie, die in allen drei Domänen
des Lebens vertreten ist. Enzyme dieser vergleichsweise wenig charakterisierten Familie von
Phosphatasen erweisen sich zunehmend als biomedizinisch interessante Zielmoleküle, da immer mehr
Krankheiten identifiziert werden, bei denen HAD Phosphatasen eine Rolle spielen. In der hier vorliegenden Doktorarbeit wurde die HAD Phosphatase Chronophin biochemisch und strukturell charakterisiert. Bisher konnte gezeigt werden, dass Chronophin die Proteine Cofilin-1, ein Schlüsselprotein in der Regulation des Aktin-Zytoskeletts, und den Steroidrezeptor Coaktivator 3 (SRC-3) dephosphoryliert. Darüberhinaus ist bekannt, dass Chronophin eine spezifische Pyridoxal 5'-Phosphat (PLP, Vitamin B6) Phosphatase ist, und somit an der Regulation verschiedenster Signalwege beteiligt ist. Die hier beschriebene Analyse von Chronophin beinhaltet die Untersuchung intrinsischer Regulationsmechanismen, wie z.B. Determinanten
der Substratspezifität, die allosterische Regulation über Dimerisierung, bis hin zur Kontrolle durch extrinsische Faktoren wie interagierende Proteine oder Inhibitoren.
Die Interaktion von Chronophin mit den kürzlich in unserer Arbeitsgruppe identifizierten
Interaktionspartnern CIB1 (Kalzium- und Integrin-bindendes Protein 1) und Calmodulin wurde mit Hilfe rekombinant exprimierter und gereinigter Proteine untersucht. Dabei kam heraus, dass sich die Assoziation von CIB1 und Calmodulin an Chronophin gegenseitig ausschließt, und dass dieser Prozess durch Kalzium reguliert wird. Dabei beeinflusst weder die Bindung an CIB1 noch an Calmodulin die Phosphataseaktivität von Chronophin gegenüber den Substraten PLP oder phosphoryliertem Cofilin-1. Möglicherweise regulieren die beiden interagierenden Proteine die Funktion von Chronophin auf eine andere, hier nicht weiter untersuchte Art und Weise.
Der Einfluss der Chronophin-Dimerisierung wurde untersucht, indem wir eine konstitutiv monomere
Variante des üblicherweise dimeren Chronophins geschaffen haben. Diese monomere Variante des
Enzyms wies eine deutlich reduzierte Aktivität gegenüber PLP auf. Durch röntgenkristallographische Analysen des wild-typischen Proteins und der monomeren Variante konnten wir zeigen, dass die Dimerisierung von Chronophin notwendig ist, um ein Strukturelement, welches wichtig für die Substratspezifität ist, in einer korrekten Position zu halten. Dieser allosterische Mechanismus zur Aufrechterhaltung der Substratspezifität war bisher unbekannt, und trifft möglicherweise auf alle Proteine der C2a Unterfamilie von HAD Phosphatasen zu, die strukturell mit Chronophin verwandt sind.
Die Faktoren, welche auf die Substratspezifität von Chronophin Einfluss nehmen wurden untersucht,
indem einzelne Proteindomänen mit dem paralogen Protein AUM ausgetauscht, und die so geschaffenen
Protein-Hybride biochemisch untersucht wurden. Durch das Lösen der röntgenkristallographischen
Struktur eines Protein-Hybrids, bestehend aus der katalytischen Domäne von Chronophin und der
capping-Domäne von AUM, konnte die die erste partielle Struktur von AUM untersucht werden. Mit Hilfe dieser strukturellen Information und durch bioinformatische Analysen konnten anschließend die unterschiedliche Substratspezifitäten der beiden paralogen Phosphatasen Chronophin und AUM in einem evolutionsbiologischen Kontext untersucht werden.
Zusätzlich wurden vier mögliche Chronophin-Inhibitoren auf der Basis der PLP-Struktur synthetisiert. Die biochemische Analyse der Substanzen als Chronophin-Hemmer ergab moderate inhibitorische Eigenschaften mit IC50-Werten im micromolaren Bereich. Jedoch stellen die hier charakterisierten Inhibitoren nützliche Werkzeuge für die Untersuchung der Struktur-Wirkungsbeziehungen von Chronophin als PLP-Phosphatase dar. Die röntgenkristallographische Struktur von Chronophin mit einem der Inhibitoren liefert außerdem eine wichtge Grundlage für die zukünfitige Verbesserung der Inhibitoren bezüglich Effektivität und Spezifität.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:11008 |
Date | January 2014 |
Creators | Knobloch, Gunnar |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.011 seconds